This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259784 #25 May 05 2019 08:58:04 %S A259784 1,0,0,0,1,0,0,0,2,0,0,1,3,5,0,0,0,6,18,20,0,0,1,12,44,111,97,0,0,0, %T A259784 24,116,396,744,574,0,0,1,44,331,1285,3628,5571,3973,0,0,0,84,932, %U A259784 4312,15038,34948,46662,31520,0,0,1,159,2532,15437,59963,181193,359724,434127,281825,0 %N A259784 Number T(n,k) of permutations p of [n] with no fixed points where the maximal displacement of an element equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %H A259784 Alois P. Heinz, <a href="/A259784/b259784.txt">Rows n = 0..20, flattened</a> %F A259784 T(n,k) = A259776(n,k) - A259776(n,k-1) for k>0, T(n,0) = A000007(n). %e A259784 Triangle T(n,k) begins: %e A259784 1; %e A259784 0, 0; %e A259784 0, 1, 0; %e A259784 0, 0, 2, 0; %e A259784 0, 1, 3, 5, 0; %e A259784 0, 0, 6, 18, 20, 0; %e A259784 0, 1, 12, 44, 111, 97, 0; %e A259784 0, 0, 24, 116, 396, 744, 574, 0; %e A259784 0, 1, 44, 331, 1285, 3628, 5571, 3973, 0; %p A259784 b:= proc(n, s, k) option remember; `if`(n=0, 1, `if`(n+k in s, %p A259784 b(n-1, (s minus {n+k}) union `if`(n-k>1, {n-k-1}, {}), k), %p A259784 add(`if`(j=n, 0, b(n-1, (s minus {j}) union %p A259784 `if`(n-k>1, {n-k-1}, {}), k)), j=s))) %p A259784 end: %p A259784 A:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), b(n, {$max(1, n-k)..n}, k)): %p A259784 T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)): %p A259784 seq(seq(T(n, k), k=0..n), n=0..12); %t A259784 b[n_, s_, k_] := b[n, s, k] = If[n==0, 1, If[MemberQ[s, n+k], b[n-1, (s ~Complement~ {n+k}) ~Union~ If[n-k>1, {n-k-1}, {}], k], Sum[If[j==n, 0, b[n-1, (s ~Complement~ {j}) ~Union~ If[n-k>1, {n-k-1}, {}], k]], {j, s}]] ]; %t A259784 A[n_, k_] := If[k == 0, If[n == 0, 1, 0], b[n, Range[Max[1, n-k], n], k]]; %t A259784 T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k-1]]; %t A259784 Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, May 05 2019, after _Alois P. Heinz_ *) %Y A259784 Rows sums give A000166. %Y A259784 Column k=0 and main diagonal give A000007. %Y A259784 Columns k=1-10 give: A059841 (for n>0), A321048, A321049, A321050, A321051, A321052, A321053, A321054, A321055, A321056. %Y A259784 First lower diagonal gives A259834. %Y A259784 T(2n,n) gives A259785. %Y A259784 Cf. A259776. %K A259784 nonn,tabl %O A259784 0,9 %A A259784 _Alois P. Heinz_, Jul 05 2015