This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259792 #24 Dec 29 2016 16:04:53 %S A259792 1,1,2,5,17,62,258,1050,4365,18012,73945,301073,1214876,4852899, %T A259792 19187598,75070201,290659230,1113785613,4224773811,15866483556, %U A259792 59011553910,217410395916,793635925091,2871246090593,10297627606547,36620869115355,129166280330900 %N A259792 Number of partitions of n^3 into cubes. %H A259792 Alois P. Heinz and Vaclav Kotesovec, <a href="/A259792/b259792.txt">Table of n, a(n) for n = 0..173</a> (terms 0..120 from Alois P. Heinz) %H A259792 H. L. Fisher, <a href="/A027601/a027601.pdf">Letter to N. J. A. Sloane, Mar 16 1989</a> %H A259792 G. H. Hardy and S. Ramanujan, <a href="http://ramanujan.sirinudi.org/Volumes/published/ram33.html">Asymptotic formulae in combinatory analysis</a>, Proceedings of the London Mathematical Society, 2, XVI, 1917, p. 373. %F A259792 a(n) = [x^(n^3)] Product_{j>=1} 1/(1-x^(j^3)). - _Alois P. Heinz_, Jul 10 2015 %F A259792 a(n) = A003108(n^3). - _Vaclav Kotesovec_, Aug 19 2015 %F A259792 a(n) ~ exp(4 * (Gamma(1/3)*Zeta(4/3))^(3/4) * n^(3/4) / 3^(3/2)) * (Gamma(1/3)*Zeta(4/3))^(3/4) / (24*Pi^2*n^(15/4)) [after Hardy & Ramanujan, 1917]. - _Vaclav Kotesovec_, Dec 29 2016 %p A259792 b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, %p A259792 b(n, i-1) +`if`(i^3>n, 0, b(n-i^3, i))) %p A259792 end: %p A259792 a:= n-> b(n^3, n): %p A259792 seq(a(n), n=0..26); # _Alois P. Heinz_, Jul 10 2015 %t A259792 $RecursionLimit = 1000; b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[ i^3>n, 0, b[n-i^3, i]]]; a[n_] := b[n^3, n]; Table[a[n], {n, 0, 26}] (* _Jean-François Alcover_, Jul 15 2015, after _Alois P. Heinz_ *) %Y A259792 A row of the array in A259799. %Y A259792 Cf. A279329. %Y A259792 Cf. A001156, A003108, A046042. %Y A259792 Cf. A037444, A259793. %K A259792 nonn %O A259792 0,3 %A A259792 _N. J. A. Sloane_, Jul 06 2015 %E A259792 More term from _Alois P. Heinz_, Jul 10 2015