This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259808 #13 Aug 14 2020 11:44:39 %S A259808 4,14,56,226,958,4052,17508,75634,330804,1448830,6397288,28293338, %T A259808 125845174,560617586,2507890716,11234741560,50489990570,227190742034, %U A259808 1024878998006,4628430595232 %N A259808 Guttmann-Torrie simple cubic lattice series coefficients c_n^{2}(Pi/2). %C A259808 The number of n-step self-avoiding walks in two connected octants on a cubic lattice where the walk starts at the origin. - _Scott R. Shannon_, Aug 14 2020 %H A259808 A. J. Guttmann and G. M. Torrie, <a href="https://doi.org/10.1088/0305-4470/17/18/023">Critical behavior at an edge for the SAW and Ising model</a>, J. Phys. A 17 (1984), 3539-3552. %K A259808 nonn,more %O A259808 1,1 %A A259808 _N. J. A. Sloane_, Jul 06 2015 %E A259808 a(16)-a(20) from _Scott R. Shannon_, Aug 14 2020