This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259822 #5 Jul 05 2015 17:19:24 %S A259822 1,1,4,37,586,13612,424621,16827976,815866699,47093387797, %T A259822 3170897237125,245127016240321,21482473673228266,2112385883734692910, %U A259822 231062843227493844112,27913223028923592662539,3701041353685453743060265,535729316331363978105167557,84263588534262286958390813305 %N A259822 E.g.f. A(x) satisfies: A( Integral 1/A(x)^3 dx ) = exp(x). %F A259822 E.g.f. satisfies: A(x) = exp( Series_Reversion( Integral 1/A(x)^3 dx ) ). %F A259822 E.g.f. A(x) such that A(x/3)^3 is the e.g.f. of A233335. %e A259822 E.g.f.: A(x) = 1 + x + 4*x^2/2! + 37*x^3/3! + 586*x^4/4! + 13612*x^5/5! + 424621*x^6/6! +... %e A259822 where log(A(x)) = Series_Reversion( Integral 1/A(x)^3 dx ): %e A259822 log(A(x)) = x + 3*x^2/2! + 27*x^3/3! + 432*x^4/4! + 10206*x^5/5! + 323919*x^6/6! +...+ 3^(n-1)*A214645(n)*x^n/n! +... %e A259822 and %e A259822 A(x/3)^3 = 1 + x + 2*x^2/2! + 7*x^3/3! + 38*x^4/4! + 292*x^5/5! + 2975*x^6/6! +...+ A233335(n)*x^n/n! +... %o A259822 (PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(serreverse(intformal(1/A^3+x*O(x^n))))); n!*polcoeff(A, n)} %o A259822 for(n=0, 30, print1(a(n), ", ")) %Y A259822 Cf. A233335, A214645. %K A259822 nonn %O A259822 0,3 %A A259822 _Paul D. Hanna_, Jul 05 2015