cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259830 Decimal expansion of the length of the "double egg" curve (length of one egg with diameter a = 1).

This page as a plain text file.
%I A259830 #10 Jul 09 2015 04:04:29
%S A259830 2,7,6,0,3,4,5,9,9,6,3,0,0,9,4,6,3,4,7,5,3,1,0,9,4,2,5,4,8,8,0,4,0,5,
%T A259830 8,2,4,2,0,1,6,2,7,7,3,0,9,4,7,1,7,6,4,2,7,0,2,0,5,7,0,6,7,0,2,6,0,0,
%U A259830 5,5,1,2,2,6,5,4,9,1,0,7,5,3,0,2,8,4,5,8,3,6,4,7,9,8,4,8,7,3,4,6,7,1,5
%N A259830 Decimal expansion of the length of the "double egg" curve (length of one egg with diameter a = 1).
%C A259830 Essentially the same as A196530. - _R. J. Mathar_, Jul 09 2015
%H A259830 Robert Ferréol (MathCurve), <a href="http://www.mathcurve.com/courbes2d/oeufdouble/oeufdouble.shtml">Oeuf double, Double egg, Doppeleikurve</a> [in French]
%H A259830 Jürgen Köller (Mathematische Basteleien), <a href="http://www.mathematische-basteleien.de/eggcurves.htm">Egg Curves and Ovals</a>
%F A259830 Polar equation: r(t) = a*cos(t)^2.
%F A259830 Cartesian equation: (x^2+y^2)^3 = a^2*x^4.
%F A259830 Area of one egg: A(a) = 3*Pi*a^2/16.
%F A259830 Length of one egg: L(a) = (a/3)*(6 + sqrt(3)*log(2 + sqrt(3))).
%e A259830 2.76034599630094634753109425488040582420162773094717642702057067026...
%t A259830 L[a_] := (a/3)*(6 + Sqrt[3]*Log[2 + Sqrt[3]]); RealDigits[L[1], 10, 103] // First
%o A259830 (PARI) (6 + sqrt(3)*log(2 + sqrt(3)))/3 \\ _Michel Marcus_, Jul 06 2015
%K A259830 nonn,cons,easy
%O A259830 1,1
%A A259830 _Jean-François Alcover_, Jul 06 2015