This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259832 #24 May 22 2025 10:21:43 %S A259832 7708,9020,86934,92128,120228,325180,372000,491630,565724,739032, %T A259832 862780,1120024,1344090,1419304,1440858,1678232,2752626,2980515, %U A259832 3684344,4154418,4860476,7539610,7565257,9527064,11025372,12277728,17002336,20256672,22528536,24597984 %N A259832 Numbers n with the property that it is possible to write the base 2 expansion of n as concat(a_2,b_2), with a_2>0 and b_2>0 such that, converting a_2 and b_2 to base 10 as a and b, we have (sigma(a)-a)*(sigma(b)-b) = sigma(n). %C A259832 a(62) > 10^8. - _Hiroaki Yamanouchi_, Sep 24 2015 %H A259832 Hiroaki Yamanouchi, <a href="/A259832/b259832.txt">Table of n, a(n) for n = 1..61</a> %e A259832 7708 in base 2 is 1111000011100. If we take 1111000011100 = concat(11110000, 11100) then 11110000 and 11100 converted to base 10 are 240 and 28. Finally (sigma(240) - 240)*(sigma(28) - 28) = (744 - 240)*(56 - 28) = 504 * 28 = 14112 = sigma(7708); 9020 in base 2 is 10001100111100. If we take 10001100111100= concat(10001100, 111100) then 110 and 01111110000 converted to base 10 are 140 and 60. Finally (sigma(140) - 140)*(sigma(60) - 60) = (336 - 140)*(168 - 60)= 196 * 108 = 21160 = sigma(9020). %p A259832 with(numtheory): P:=proc(q) local a,b,c,k,n; %p A259832 for n from 1 to q do c:=convert(n, binary, decimal); %p A259832 for k from 1 to ilog10(c) do %p A259832 a:=convert(trunc(c/10^k), decimal, binary); %p A259832 b:=convert((c mod 10^k), decimal, binary); %p A259832 if a*b>0 then if (sigma(a)-a)*(sigma(b)-b)=sigma(n) then print(n); %p A259832 break; fi; fi; od; od; end: P(10^9); %t A259832 f[n_] := Block[{d = IntegerDigits[n, 2], len = IntegerLength[n, 2], k}, ReplaceAll[Reap[Do[k = {FromDigits[Take[d, i], 2], FromDigits[Take[d, -(len - i)], 2]}; If[! MemberQ[k, 0], Sow@ k], {i, 1, len - 1}]], {} -> {1}][[-1, 1]]]; Select[Range@ 125000, MemberQ[(DivisorSigma[1, #1] - #1) (DivisorSigma[1, #2] - #2) & @@@ f@ #, DivisorSigma[1, #]] &] (* _Michael De Vlieger_, Jul 07 2015 *) %o A259832 (Python) %o A259832 from sympy import divisor_sigma %o A259832 A259832_list= [] %o A259832 for n in range(2,10**6): %o A259832 s, k = format(n,'0b'), divisor_sigma(n) %o A259832 for l in range(1,len(s)): %o A259832 n1, n2 = int(s[:l],2), int(s[l:],2) %o A259832 if n2 > 0 and k == (divisor_sigma(n1)-n1)*(divisor_sigma(n2)-n2): %o A259832 A259832_list.append(n) %o A259832 break # _Chai Wah Wu_, Jul 17 2015 %Y A259832 Cf. A000203, A244079, A258813, A258843, A259831. %K A259832 nonn,base %O A259832 1,1 %A A259832 _Paolo P. Lava_, Jul 06 2015 %E A259832 a(16)-a(21) from _Chai Wah Wu_, Jul 17 2015 %E A259832 a(22)-a(30) from _Hiroaki Yamanouchi_, Sep 24 2015