This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259842 #15 May 15 2022 07:40:36 %S A259842 1,4,22,178,2114,36398,896128,31136246,1508259823,100727634758, %T A259842 9179951931947,1131033520118692,186769092227016256, %U A259842 41008206412935719870,11884278052476825052541,4514826724675651497522250,2234142899928806917974566378,1431533853656098851281985968328 %N A259842 Number of nonzero elements in all n X n Tesler matrices of nonnegative integers. %C A259842 For the definition of Tesler matrices see A008608. %F A259842 a(n) = Sum_{k=1..n} A259841(n,k). %e A259842 There are two 2 X 2 Tesler matrices: [1,0; 0,1], [0,1; 0,2], containing four nonzero elements, thus a(2) = 4. %p A259842 g:= u-> `if`(u=0, 0, 1): %p A259842 b:= proc(n, i, l) option remember; (m->`if`(m=0, [1, g(n)], `if`(i=0, %p A259842 (p->p+[0, p[1]*g(n)])(b(l[1]+1, m-1, subsop(1=NULL, l))), add( %p A259842 (p->p+[0, p[1]*g(j)])(b(n-j, i-1, subsop(i=l[i]+j, l))) %p A259842 , j=0..n))))(nops(l)) %p A259842 end: %p A259842 a:= n-> b(1, n-1, [0$(n-1)])[2]: %p A259842 seq(a(n), n=1..14); %t A259842 g[u_] := If[u == 0, 0, 1]; %t A259842 b[n_, i_, l_] := b[n, i, l] = Function[m, If[m == 0, {1, g[n]}, If[i == 0, %t A259842 # + {0, #[[1]] g[n]}&[b[l[[1]] + 1, m - 1, ReplacePart[l, 1 -> %t A259842 Nothing]]], Sum[# + {0, #[[1]] g[j]}&[b[n - j, i - 1, ReplacePart[ %t A259842 l, i -> l[[i]] + j]]], {j, 0, n}]]]][Length[l]]; %t A259842 a[n_] := b[1, n - 1, Table[0, {n - 1}]][[2]]; %t A259842 Table[Print[n, " ", a[n]]; a[n], {n, 1, 18}] (* _Jean-François Alcover_, May 15 2022, after _Alois P. Heinz_ *) %Y A259842 Row sums of A259841. %Y A259842 Cf. A008608. %K A259842 nonn %O A259842 1,2 %A A259842 _Alois P. Heinz_, Jul 06 2015