This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259843 #12 May 15 2022 07:40:40 %S A259843 1,3,15,117,1367,23329,570933,19740068,951916938,63295826369, %T A259843 5743788894259,704672958229270,115877288304781885, %U A259843 25338423080304873558,7313716095786704678585,2767636572798780219442327,1364367542961142350256304582,871016593387715393187604249892 %N A259843 Number of 1 elements in all n X n Tesler matrices of nonnegative integers. %C A259843 For the definition of Tesler matrices see A008608. %F A259843 a(n) = A259841(n,1). %e A259843 There are two 2 X 2 Tesler matrices: [1,0; 0,1], [0,1; 0,2], containing three 1's, thus a(2) = 3. %p A259843 g:= u-> `if`(u=1, 1, 0): %p A259843 b:= proc(n, i, l) option remember; (m->`if`(m=0, [1, g(n)], `if`(i=0, %p A259843 (p->p+[0, p[1]*g(n)])(b(l[1]+1, m-1, subsop(1=NULL, l))), add( %p A259843 (p->p+[0, p[1]*g(j)])(b(n-j, i-1, subsop(i=l[i]+j, l))) %p A259843 , j=0..n))))(nops(l)) %p A259843 end: %p A259843 a:= n-> b(1, n-1, [0$(n-1)])[2]: %p A259843 seq(a(n), n=1..14); %t A259843 g[u_] := If[u == 1, 1, 0]; %t A259843 b[n_, i_, l_] := b[n, i, l] = Function[m, If[m == 0, {1, g[n]}, If[i == 0, # + {0, #[[1]] g[n]}&[b[l[[1]] + 1, m - 1, ReplacePart[l, 1 -> Nothing]] ], Sum[# + {0, #[[1]] g[j]}&[b[n - j, i - 1, ReplacePart[l, i -> l[[i]] + j]]], {j, 0, n}]]]][Length[l]]; %t A259843 a[n_] := b[1, n - 1, Table[0, {n - 1}]][[2]]; %t A259843 Table[Print[n, " ", a[n]]; a[n], {n, 1, 18}] (* _Jean-François Alcover_, May 15 2022, after _Alois P. Heinz_ *) %Y A259843 Column k=1 of A259841. %K A259843 nonn %O A259843 1,2 %A A259843 _Alois P. Heinz_, Jul 06 2015