This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259862 #43 Jan 07 2025 11:11:11 %S A259862 1,1,1,2,1,1,5,3,2,1,13,11,7,2,1,44,56,39,13,3,1,191,385,332,111,21,3, %T A259862 1,1229,3994,4735,2004,345,34,4,1,13588,67014,113176,66410,13429,992, %U A259862 54,4,1,288597,1973029,4629463,3902344,1109105,99419,3124,81,5,1,12297299,105731474,327695586,388624106,162318088,21500415,820956,9813,121,5,1 %N A259862 Triangle read by rows: T(n,k) = number of unlabeled graphs with n nodes and connectivity exactly k (n>=1, 0<=k<=n-1). %C A259862 These are vertex-connectivities. Spanning edge-connectivity is A263296. Non-spanning edge-connectivity is A327236. Cut-connectivity is A327127. - _Gus Wiseman_, Sep 03 2019 %H A259862 Georg Grasegger, <a href="/A259862/b259862.txt">Table of n, a(n) for n = 1..78</a> %H A259862 Brendan McKay, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2015-July/015022.html">confusion over k-connected graphs</a>, posting to Sequence Fans Mailing List, Jul 08 2015. %H A259862 Jens M. Schmidt, <a href="/A324088/a324088.html">Combinatorial Data</a> %H A259862 Gus Wiseman, <a href="/A259862/a259862.png">The graphs counted by row n = 5 (isolated vertices not shown).</a> %e A259862 Triangle begins: %e A259862 1; %e A259862 1, 1; %e A259862 2, 1, 1; %e A259862 5, 3, 2, 1; %e A259862 13, 11, 7, 2, 1; %e A259862 44, 56, 39, 13, 3, 1; %e A259862 191, 385, 332, 111, 21, 3, 1; %e A259862 1229, 3994, 4735, 2004, 345, 34, 4, 1; %e A259862 13588, 67014, 113176, 66410, 13429, 992, 54, 4, 1; %e A259862 288597, 1973029, 4629463, 3902344, 1109105, 99419, 3124, 81, 5, 1; %e A259862 12297299,105731474,327695586,388624106,162318088,21500415,820956,9813,121,5,1; %e A259862 ... %Y A259862 Columns k=0..10 (up to initial nonzero terms) are A000719, A052442, A052443, A052444, A052445, A324234, A324235, A324088, A324089, A324090, A324091. %Y A259862 Row sums are A000088. %Y A259862 Number of graphs with connectivity at least k for k=1..10 are A001349, A002218, A006290, A086216, A086217, A324240, A324092, A324093, A324094, A324095. %Y A259862 The labeled version is A327334. %Y A259862 Cf. A002494, A263296, A322389, A326786, A327127, A327236. %K A259862 nonn,tabl %O A259862 1,4 %A A259862 _N. J. A. Sloane_, Jul 08 2015