cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259885 a(n) = max{T(n,k), k=1..n}, where T(n,k) is the number of Dyck paths of length 2n and height k (1<=k<=n).

This page as a plain text file.
%I A259885 #16 Dec 20 2015 13:56:57
%S A259885 1,1,3,7,18,57,169,484,1684,5661,18579,59917,214058,760487,2665884,
%T A259885 9246276,31945379,117939506,431530926,1567159901,5655480303,
%U A259885 20299352107,74300429926,278279597781,1037075511926,3848154018734,14224439297732,52402156308977
%N A259885 a(n) = max{T(n,k), k=1..n}, where T(n,k) is the number of Dyck paths of length 2n and height k (1<=k<=n).
%H A259885 Gheorghe Coserea, <a href="/A259885/b259885.txt">Table of n, a(n) for n = 1..1535</a>
%F A259885 a(n) ~ 4*K/sqrt(Pi) * 4^n/n^2, where K = 0.2675... (see A265180). - _Gheorghe Coserea_, Dec 05 2015
%e A259885 For n=4, a(4)=7 because T(4,1)=1, T(4,2)=7, T(4,3)=5, T(4,4)=1.
%Y A259885 Cf. A080936, A259899 (position of maximum), A265180.
%K A259885 nonn,walk
%O A259885 1,3
%A A259885 _Gheorghe Coserea_, Jul 07 2015