This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259909 #29 Jul 15 2015 21:46:53 %S A259909 1093,1006003,40487 %N A259909 n-th Wieferich prime to base prime(n), i.e., primes p such that p is the n-th solution of the congruence (prime(n))^(p-1) == 1 (mod p^2). %C A259909 Main diagonal of table T(b, p) of Wieferich primes p to prime bases b (that table is not yet in the OEIS as a sequence). %C A259909 a(4), if it exists, corresponds to A123693(4) and is larger than 9.7*10^14 (cf. Dorais, Klyve, 2011). %C A259909 a(5), if it exists, corresponds to the 5th base-11 Wieferich prime and is larger than approximately 5.9*10^13 (cf. Fischer). %C A259909 a(6), if it exists, corresponds to A128667(6) and is larger than approximately 5.9*10^13 (cf. Fischer). %D A259909 W. Keller, Prime solutions p of a^p-1 = 1 (mod p2) for prime bases a, Abstracts Amer. Math. Soc., 19 (1998), 394. %H A259909 M. Aaltonen and K. Inkeri, <a href="http://dx.doi.org/10.1090/S0025-5718-1991-1052082-7">Catalan's equation x^p - y^q and related congruences</a>, Mathematics of Computation, Vol. 56 No. 193 (1991), 359-370. %H A259909 F. G. Dorais and D. Klyve, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Klyve/klyve3.html">A Wieferich prime search up to p < 6.7*10^15</a>, J. Integer Seq. 14 (2011), Art. 11.9.2, 1-14. %H A259909 R. Fischer, <a href="http://www.fermatquotient.com/FermatQuotienten/FermQ_Sort.txt">Thema: Fermatquotient B^(P-1) == 1 (mod P^2)</a> %H A259909 W. Keller and J. Richstein, <a href="http://web.archive.org/web/20091109011757/http://www1.uni-hamburg.de/RRZ/W.Keller/FermatQuotient.html">Fermat quotients q_p(a) that are divisible by p</a> (Cached copy at the Wayback Machine). %H A259909 K. E. Kloss, <a href="http://dx.doi.org/10.6028/jres.069B.035">Some Number-Theoretic Calculations</a>, J. Research of the National Bureau of Standards-B. Mathematics and Mathematical Physics, Vol. 69B, No. 4 (1965), 335-336. %e A259909 a(1) = A001220(1) = 1093. %e A259909 a(2) = A014127(2) = 1006003. %e A259909 a(3) = A123692(3) = 40487. %o A259909 (PARI) a(n) = my(i=0, p=2); while(i < n, if(Mod(prime(n), p^2)^(p-1)==1, i++; if(i==n, break({1}))); p=nextprime(p+1)); p %Y A259909 Cf. A001220, A014127, A123692, A123693, A174422, A178871. %K A259909 nonn,hard,bref,more %O A259909 1,1 %A A259909 _Felix Fröhlich_, Jul 07 2015