cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259914 Staircase path through the array P(n,k) of the k-th partial sums of cubes (A000578).

Original entry on oeis.org

1, 9, 10, 46, 57, 203, 272, 846, 1200, 3432, 5082, 13728, 21021, 54483, 85696, 215254, 346086, 848198, 1388900, 3337236, 5549786, 13119614, 22108704, 51557260, 87885070, 202588830, 348817770, 796117860, 1382941125, 3129153795
Offset: 1

Views

Author

Luciano Ancora, Jul 08 2015

Keywords

Comments

The term "stepped path" in the name field is the same used in A001405 and A259775.

Examples

			The array begins:
[1], [9],  36,   100,   225,    441,  ...  A000537
1,  [10], [46],  146,   371,    812,  ...  A024166
1,   11,  [57], [203],  574,   1386,  ...  A101094
1,   12,   69,  [272], [846],  2232,  ...  A101097
1,   13,   82,   354, [1200], [3432], ...  A101102
1,   14,   96,   450,  1650,  [5082], ...  A254469
		

Crossrefs

Programs

  • Mathematica
    Table[DifferenceRoot[Function[{a, n},
             {(-650880 - 1496112*n - 1426512*n^2 - 722164*n^3 - 204716*n^4 - 30812*n^5 - 1924*n^6)*a[n] + (-56736 - 140412*n - 132006*n^2 - 58114*n^3 - 12090*n^4 - 962*n^5)*a[1 + n] + (78624 + 229884*n + 273800*n^2 + 167579*n^3 + 54567*n^4 + 8665*n^5 + 481*n^6)*a[2 + n] == 0, a[1] == 1, a[2] == 9}]][n], {n, 30}]

Formula

Conjecture: 2*(n+7)*(145672*n^2-236343*n+123525)*a(n) +(-78613*n^3-794662*n^2+327391*n+20220)*a(n-1) +2*(-582688*n^3-1889455*n^2-2148719*n-832650)*a(n-2) +4*(n-1)*(78613*n^2+133361*n+64050)*a(n-3) = 0. - R. J. Mathar, Jul 16 2015