cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259925 a(n) = (n^2 - n - 1)^n.

This page as a plain text file.
%I A259925 #35 Sep 08 2022 08:46:13
%S A259925 1,-1,1,125,14641,2476099,594823321,194754273881,83733937890625,
%T A259925 45848500718449031,31181719929966183601,25804264053054077850709,
%U A259925 25542038069936263923006961,29806575070123343006591796875,40504199006061377874300161158921
%N A259925 a(n) = (n^2 - n - 1)^n.
%C A259925 (n^2-n-1) is the Fibonacci polynomial; so (n^2 - n - 1)^n = 0 has a single root phi (A001622).
%F A259925 a(n) = A165900(n)^n.
%e A259925 For n = 0, a(0) = (0^2 - 0 - 1)^0 = (-1)^0 = 1.
%p A259925 A259925:=n->(n^2-n-1)^n: seq(A259925(n), n=0..20); # _Wesley Ivan Hurt_, Jul 10 2015
%t A259925 Table[(n^2 - n - 1)^n, {n, 0, 10}]
%o A259925 (Sage) [(n**2 - n - 1)**n for n in range(21)] # _Anders Hellström_, Jul 10 2015
%o A259925 (Magma) [(n^2 - n - 1)^n: n in [0..20]]; // _Vincenzo Librandi_, Jul 10 2015
%o A259925 (PARI) vector(20, n,  n--; (n^2 - n - 1)^n) \\ _Michel Marcus_, Aug 06 2015
%Y A259925 Cf. A165900.
%K A259925 sign,easy
%O A259925 0,4
%A A259925 _Ilya Gutkovskiy_, Jul 09 2015
%E A259925 More terms from _Vincenzo Librandi_, Jul 10 2015