cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259933 Amicable pairs (x < y) ordered by nondecreasing sum (x + y) and then by increasing x.

This page as a plain text file.
%I A259933 #65 Jul 15 2015 18:02:24
%S A259933 220,284,1184,1210,2620,2924,5020,5564,6232,6368,10744,10856,12285,
%T A259933 14595,17296,18416,66928,66992,67095,71145,63020,76084,69615,87633,
%U A259933 79750,88730,100485,124155,122368,123152,122265,139815,141664,153176,142310,168730,171856,176336,176272,180848,185368,203432,196724,202444,280540,365084,308620,389924
%N A259933 Amicable pairs (x < y) ordered by nondecreasing sum (x + y) and then by increasing x.
%C A259933 A pair of numbers x and y is called amicable if the sum of the proper divisors (or aliquot parts) of either one is equal to the other.
%C A259933 By definition a property of the amicable pair (x, y) is that x + y = sigma(x) = sigma(y).
%C A259933 The amicable pairs (x < y) are adjacent to each other in the list.
%C A259933 Also A260086 and A260087 interleaved.
%C A259933 Another version (A259180) lists the amicable pairs (x < y) ordered by increasing x.
%C A259933 Amicable numbers A063990 are the terms of this sequence in increasing order.
%C A259933 First differs from both A063990 and A259180 at a(17).
%H A259933 Laszlo Hars, <a href="https://www.mail-archive.com/julia-users@googlegroups.com/msg04022.html">Performance compared to mathematica</a> Julia-users (2014)
%H A259933 Khelleos, <a href="http://www.cyberforum.ru/lisp/thread386611.html">Amicable numbers</a>, CyberForum.ru (2011)
%H A259933 OEIS Wiki, <a href="https://oeis.org/wiki/Amicable_numbers">Amicable numbers</a> (This page needs work)
%H A259933 Wikipédia, <a href="https://hu.wikipedia.org/wiki/Barátságos_számok">Barátságos számok</a> (contains a mistake: A063990 should be replaced with A259933)
%F A259933 a(2n-1) + a(2n) = A000203(a(2n-1)) = A000203(a(2n)) = A259953(n).
%e A259933 -----------------------------------
%e A259933        Amicable pair         Sum
%e A259933           x      y          x + y
%e A259933 -----------------------------------
%e A259933 n     A260086 A260087      A259953
%e A259933 -----------------------------------
%e A259933 1        220     284          504
%e A259933 2       1184    1210         2394
%e A259933 3       2620    2924         5544
%e A259933 4       5020    5564        10584
%e A259933 5       6232    6368        12600
%e A259933 6      10744   10856        21600
%e A259933 7      12285   14595        26880
%e A259933 8      17296   18416        35712
%e A259933 9      66928   66992       133920
%e A259933 10     67095   71145       138240
%e A259933 11     63020   76084       139104
%e A259933 12     69615   87633       157248
%e A259933 ...      ...     ...          ...
%e A259933 32    609928  686072      1296000
%e A259933 33    643336  652664      1296000
%e A259933 ...
%e A259933 The sum of the proper divisors (or aliquot parts) of 220 is 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284. On the other hand the sum of the proper divisors (or aliquot parts) of 284 is 1 + 2 + 4 + 71 + 142 = 220. Note that 220 + 284 = sigma(220) = sigma(284) = 504. The sum 220 + 284 = 504 is the smallest sum of an amicable pair, so a(1) = 220 and a(2) = 284.
%e A259933 Note that some pairs (x, y) share the same sum (x + y), for example: (609928 + 686072) = (643336 + 652664) = sigma(609928) = sigma(686072) = sigma(643336) = sigma(652664) = 1296000, thus in the list first appears the pair (609928, 686072) and then (643336, 652664) because 609928 < 643336.
%Y A259933 Cf. A000203, A063990, A259180, A259953, A260086, A260087.
%K A259933 nonn
%O A259933 1,1
%A A259933 _Omar E. Pol_, Jul 09 2015