This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259938 #40 Feb 16 2025 08:33:26 %S A259938 0,1,0,0,-1,0,0,4,0,-1,-22,0,13,140,0,-136,-970,9,1330,7104,-231, %T A259938 -12650,-54096,3900,118780,423890,-54810,-1108380,-3393696,695640, %U A259938 10311840,27615648,-8282604,-95810606,-227480848,94449456,889817328,1890685212,-1044402840,-8263944216,-15811484852 %N A259938 Expansion of the series reversion of Sum_{n>=1} x^(n^2). %C A259938 x + x^4 + x^9 + x^16 + x^25 + ... is the expansion of (theta_3(0, x) - 1)/2, where theta_3 is the Jacobi theta function. %H A259938 Max Alekseyev, <a href="/A259938/b259938.txt">Table of n, a(n) for n = 0..1000</a> %H A259938 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SeriesReversion.html">Series Reversion</a> %F A259938 For n>1, a(n) = Sum_{j2,j3,...} (-1)^(j2+j3+...) * (n-1+j2+j3+...)! / (j2!*j3!*...) / n!, where the sum is taken over all nonnegative integers j2, j3, ... such that (2^2-1)*j2 + (3^2-1)*j3 + ... = n-1. - _Max Alekseyev_, Jul 06 2021 %t A259938 InverseSeries[(EllipticTheta[3, 0, x] - 1)/2 + O[x]^30][[3]] %o A259938 (PARI) Vec( serreverse( sum(i=1,32,x^i^2) + O(x^33^2) ) ); \\ _Max Alekseyev_, Jul 06 2021 %Y A259938 Cf. A049140, A192540. %K A259938 easy,sign %O A259938 0,8 %A A259938 _Vladimir Reshetnikov_, Jul 09 2015