This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259973 #28 Sep 07 2024 15:41:33 %S A259973 1,2,3,5,8,11,23,27,29,32,41,50,53,57,83,85,89,111,113,128,131,161, %T A259973 173,179,191,215,233,237,239,245,251,265,275,281,293,319,355,359,365, %U A259973 391,413,419,431,437,443,453,481,485,491,493,505,509,511,535,589,593,603 %N A259973 Numbers n such that sigma(n) + product of divisors of n is prime. %C A259973 If p is prime, then (sigma(p) + product of divisors of p) = 2*p+1. So the subsequence of primes gives the Sophie Germain primes: A005384. - _Michel Marcus_, Jul 16 2015 %H A259973 K. D. Bajpai, <a href="/A259973/b259973.txt">Table of n, a(n) for n = 1..10000</a> %e A259973 a(5) = 8; divisors(8) = {1,2,4,8}; sum = 1+2+4+8 = 15; product = 1*2*4*8 = 64; 15 + 64 = 79, which is prime. %e A259973 a(8) = 27; divisors(27) = {1,3,9,27}; sum = 1+3+9+27 = 40; product = 1*3*9*27 = 729; 40+729 = 769, which is prime. %t A259973 Select[Range[2000], PrimeQ[DivisorSigma[1, #] + Times@@Divisors[#]] &] %o A259973 (Magma) [n: n in[1..1000] | IsPrime(&*Divisors(n) + SumOfDivisors(n))]; %o A259973 (PARI) for(n=1, 1000, d=divisors(n); k=sigma(n) + prod(i=1,#d,d[i]); if(isprime(k),print1(n,", "))); %Y A259973 Cf. A000203, A007955, A005384, A065512, A118369. %K A259973 nonn %O A259973 1,2 %A A259973 _K. D. Bajpai_, Jul 15 2015