This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259975 #38 Jun 27 2017 20:49:12 %S A259975 1,1,1,1,1,5,1,1,6,4,1,7,9,1,8,16,1,9,25,15,1,1,10,35,40,8,1,11,46,76, %T A259975 31,1,12,58,124,85,1,13,71,185,190,35,1,1,14,85,260,360,154,13,1,15, %U A259975 100,350,610,424,76,1,16,116,456,956,930,295 %N A259975 Irregular triangle read by rows: T(n,k) = number of ways of placing n balls into k boxes in such a way that any two adjacent boxes contain at least 4 balls. %H A259975 Alois P. Heinz, <a href="/A259975/b259975.txt">Rows n = 0..200, flattened</a> %H A259975 R. P. Boas & N. J. A. Sloane, <a href="/A005381/a005381.pdf">Correspondence, 1974</a> %H A259975 D. R. Breach, <a href="/A004120/a004120.pdf">Letter to N. J. A. Sloane, Jun 1980</a> %H A259975 M. Hayes (proposer) and D. R. Breach (solver), <a href="https://doi.org/10.1137/1012060">A combinatorial problem, Problem 68-16</a>, SIAM Rev. 12 (1970), 294-297. %e A259975 Triangle begins: %e A259975 1; %e A259975 1; %e A259975 1; %e A259975 1; %e A259975 1, 5, 1; %e A259975 1, 6, 4; %e A259975 1, 7, 9; %e A259975 1, 8, 16; %e A259975 1, 9, 25, 15, 1; %e A259975 1, 10, 35, 40, 8; %e A259975 1, 11, 46, 76, 31; %e A259975 1, 12, 58, 124, 85; %e A259975 1, 13, 71, 185, 190, 35, 1; %e A259975 1, 14, 85, 260, 360, 154, 13; %e A259975 1, 15, 100, 350, 610, 424, 76; %e A259975 ... %p A259975 b:= proc(n, v) option remember; expand(`if`(n=0, %p A259975 `if`(v=0, 1+x, 1), add(x*b(n-j, max(0, 4-j)), j=v..n))) %p A259975 end: %p A259975 T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n, 0)): %p A259975 seq(T(n), n=0..20); # _Alois P. Heinz_, Jul 12 2015 %t A259975 b[n_, v_] := b[n, v] = Expand[If[n == 0, If[v == 0, 1+x, 1], Sum[x*b[n-j, Max[0, 4-j]], {j, v, n}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][b[n, 0]]; Table[T[n], {n, 0, 20}] // Flatten (* _Jean-François Alcover_, Feb 13 2016, after _Alois P. Heinz_ *) %Y A259975 Columns: A004120, A005337, A005338, A005339, A005340. %Y A259975 Row sums give A257666. %K A259975 nonn,tabf %O A259975 0,6 %A A259975 _N. J. A. Sloane_, Jul 12 2015 %E A259975 More terms from _Alois P. Heinz_, Jul 12 2015