cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A259990 This sequence and A259991 are base-14 analogs of A007185 and A016090, written in base 10.

Original entry on oeis.org

7, 49, 2401, 2401, 386561, 5764801, 58471553, 374712065, 4802079233, 149429406721, 1595702681601, 42091354378241, 665724390506497, 10190301669556225, 99086356274020353, 1654767311852142593, 14722487338708369409, 228161914444026740737, 2789435039707847196673
Offset: 1

Views

Author

N. J. A. Sloane, Jul 13 2015

Keywords

Comments

See Schut (1991) for precise definition.
Ignoring repetitions, the subsequence of A201919 of terms ending in 7 in base 14. - Eric M. Schmidt, Jul 18 2015

References

  • C. P. Schut, Idempotents. Report AM-R9101, Centrum voor Wiskunde en Informatica, Amsterdam, 1991.

Crossrefs

Programs

  • Sage
    def a(n) : return crt(1, 0, 2^n, 7^n) # Eric M. Schmidt, Jul 18 2015

Extensions

More terms from Eric M. Schmidt, Jul 18 2015

A259986 This sequence and A259987 are base-6 analogs of A007185 and A016090, written in base 10.

Original entry on oeis.org

3, 9, 81, 81, 6561, 29889, 76545, 636417, 3995649, 24151041, 326481921, 689278977, 11573190657, 76876660737, 155240824833, 2035980763137, 4857090670593, 55637069004801, 157197025673217, 1375916505694209, 19656708706009089, 129341461907898369
Offset: 1

Views

Author

N. J. A. Sloane, Jul 13 2015

Keywords

Comments

See Schut (1991) for precise definition.
Ignoring repetitions, the subsequence of A237583 of terms ending in 3 in base 6. - Eric M. Schmidt, Jul 18 2015

References

  • C. P. Schut, Idempotents. Report AM-R9101, Centrum voor Wiskunde en Informatica, Amsterdam, 1991.

Crossrefs

Programs

  • Sage
    def a(n) : return crt(1, 0, 2^n, 3^n) # Eric M. Schmidt, Jul 18 2015

Extensions

More terms from Eric M. Schmidt, Jul 18 2015

A259987 This sequence and A259986 are base 6 analogs of A007185 and A016090, written in base 10.

Original entry on oeis.org

4, 28, 136, 1216, 1216, 16768, 203392, 1043200, 6082048, 36315136, 36315136, 1487503360, 1487503360, 1487503360, 314944159744, 785129144320, 12069568774144, 45922887663616, 452162714337280, 2280241934368768, 2280241934368768, 2280241934368768, 2280241934368768
Offset: 1

Views

Author

N. J. A. Sloane, Jul 13 2015

Keywords

Comments

See Schut (1991) for precise definition.
Ignoring repetitions, the subsequence of A237583 of terms ending in 4 in base 6. - Eric M. Schmidt, Jul 18 2015

References

  • C. P. Schut, Idempotents. Report AM-R9101, Centrum voor Wiskunde en Informatica, Amsterdam, 1991.

Crossrefs

Programs

  • Sage
    def a(n) : return crt(0, 1, 2^n, 3^n) # Eric M. Schmidt, Jul 18 2015

Extensions

More terms from Eric M. Schmidt, Jul 18 2015

A259988 This sequence and A259989 are base-6 analogs of A007185 and A016090, written in base 6.

Original entry on oeis.org

3, 13, 213, 213, 50213, 350213, 1350213, 21350213, 221350213, 2221350213, 52221350213, 152221350213, 5152221350213, 55152221350213, 155152221350213, 4155152221350213, 14155152221350213, 314155152221350213, 1314155152221350213, 21314155152221350213
Offset: 1

Views

Author

N. J. A. Sloane, Jul 13 2015

Keywords

Comments

See Schut (1991) for precise definition.
Ignoring repetitions, the subsequence of A201821 of terms ending in 3. - Eric M. Schmidt, Jul 18 2015

References

  • C. P. Schut, Idempotents. Report AM-R9101, Centrum voor Wiskunde en Informatica, Amsterdam, 1991.

Crossrefs

Programs

  • Sage
    def a(n) : return Integer(crt(1, 0, 2^n, 3^n).str(6)) # Eric M. Schmidt, Jul 18 2015

Extensions

More terms from Eric M. Schmidt, Jul 18 2015

A259989 This sequence and A259988 are base-6 analogs of A007185 and A016090, written in base 6.

Original entry on oeis.org

4, 44, 344, 5344, 5344, 205344, 4205344, 34205344, 334205344, 3334205344, 3334205344, 403334205344, 403334205344, 403334205344, 400403334205344, 1400403334205344, 41400403334205344, 241400403334205344, 4241400403334205344, 34241400403334205344
Offset: 1

Views

Author

N. J. A. Sloane, Jul 13 2015

Keywords

Comments

See Schut (1991) for precise definition.
Ignoring repetitions, the subsequence of A201821 of terms ending in 4. - Eric M. Schmidt, Jul 18 2015

References

  • C. P. Schut, Idempotents. Report AM-R9101, Centrum voor Wiskunde en Informatica, Amsterdam, 1991.

Crossrefs

Programs

  • Sage
    def a(n) : return Integer(crt(0, 1, 2^n, 3^n).str(6)) # Eric M. Schmidt, Jul 18 2015

Extensions

Corrected and extended by Eric M. Schmidt, Jul 18 2015
Showing 1-5 of 5 results.