This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260002 #28 Jan 11 2020 15:57:47 %S A260002 0,3,15569256417 %N A260002 Sudan Numbers: a(n)= f(n,n,n) where f is the Sudan function. %C A260002 The Sudan function is the first discovered not primitive recursive function that is still totally recursive like the well-known three-argument (or two-argument) Ackermann function ack(a,b,c) (or ack(a,b)). %C A260002 The Sudan function is defined as follows: %C A260002 f(0,x,y) = x+y; %C A260002 f(z,x,0) = x; %C A260002 f(z,x,y) = f(z-1, f(z,x,y-1), f(z,x,y-1)+y). %C A260002 Just as the three-argument (or two-argument) Ackermann numbers A189896 (or A046859) are defined to be the numbers that are the answer of ack(n,n,n) (or ack(n,n)) for some natural number n, the Sudan numbers are: a(n) = f(n,n,n). %C A260002 a(3)> 2^(76*2^(76*2^(76*2^(76*2^76)))) so is too big to be included. %H A260002 Wikipedia, <a href="https://en.wikipedia.org/wiki/Sudan_function">Sudan Function</a>, <a href="https://en.wikipedia.org/wiki/Primitive_recursive_function">Primitive Recursive</a>, <a href="http://en.wikipedia.org/wiki/Ackermann_function">Ackermann function</a>. %e A260002 a(1) = f(1,1,1) = f(0, f(1,1,0), f(1,1,0)+1) = f(0, 1, 2) = 1+2 = 3. %t A260002 f[z_, x_, y_] := f[z, x, y] = %t A260002 Piecewise[{{x + y, z == 0}, {x, %t A260002 z > 0 && y == 0}, {f[z - 1, f[z, x, y - 1], f[z, x, y - 1] + y], %t A260002 z > 0 && y > 0} }]; %t A260002 a[n_] := f[n,n,n] %o A260002 (PARI) f(z,x,y)=if(z,if(y,my(t=f(z,x,y-1)); f(z-1, t, t+y),x),x+y) %o A260002 a(n)=f(n,n,n) \\ _Charles R Greathouse IV_, Jul 28 2015 %Y A260002 Cf. A189896, A046859, A260003, A260004, A260005, A260006. %K A260002 nonn,bref %O A260002 0,2 %A A260002 _Natan Arie Consigli_, Jul 12 2015