cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260039 Triangle read by rows giving numbers B(n,k) arising in the enumeration of doubly rooted tree maps.

This page as a plain text file.
%I A260039 #30 May 08 2023 09:34:33
%S A260039 1,8,2,72,30,3,720,380,72,4,7780,4690,1245,140,5,89040,58254,19152,
%T A260039 3192,240,6,1064644,734496,279972,60648,7000,378,7,13173216,9416688,
%U A260039 3997584,1046832,162000,13752,560,8,167522976,122687334,56488950,17086608,3285990,382140,24885,792,9
%N A260039 Triangle read by rows giving numbers B(n,k) arising in the enumeration of doubly rooted tree maps.
%C A260039 See Mullin (1967) for precise definition.
%C A260039 What is the sequence 1, 8, 72, 720, 7780, 89040, 1064644, 13173216, 167522976, 2178520080, ... in the leading diagonal?
%H A260039 R. C. Mullin, <a href="/A260039/a260039.pdf">On the average activity of a spanning tree of a rooted map</a>, J. Combin. Theory, 3 (1967), 103-121. [Annotated scanned copy] <a href="http://dx.doi.org/10.1016/S0021-9800(67)80001-2">[DOI]</a>
%F A260039 T(n,k) = (k+1)*A260040(n,k), n>=1, 0<=k<n.
%F A260039 Conjecture: T(n,0) = n*A168452(n-1). - _R. J. Mathar_, Jul 22 2015
%e A260039 Triangle begins:
%e A260039     1;
%e A260039     8,   2;
%e A260039    72,  30,  3;
%e A260039   720, 380, 72, 4;
%e A260039   ...
%p A260039 bEq64 := proc(k,u)
%p A260039     (k+1)*(2*u+k)!*(2*u+k+2)!/u!/(u+k+2)!/(u+k+1)!/(u+1)! ;
%p A260039 end proc:
%p A260039 Eq65 := proc(n,k)
%p A260039     add( bEq64(k,u)*bEq64(k,n-k-1-u),u=0..n-k-1) ;
%p A260039 end proc:
%p A260039 B := proc(n,k)
%p A260039     n*Eq65(n,k) ;
%p A260039 end proc:
%p A260039 for n from 1 to 10 do
%p A260039     for k from 0 to n-1 do
%p A260039         printf("%a,",B(n,k)) ;
%p A260039     end do:
%p A260039     printf("\n") ;
%p A260039 end do: # _R. J. Mathar_, Jul 22 2015
%t A260039 bEq64 [k_, u_] := (k + 1)*(2u + k)!*(2u + k + 2)!/u!/(u + k + 2)!/(u + k + 1)!/(u + 1)!;
%t A260039 Eq65[n_, k_] := Sum[bEq64[k, u]*bEq64[k, n - k - 1 - u], {u, 0, n - k - 1}];
%t A260039 B[n_, k_] := n*Eq65[n, k];
%t A260039 Table[B[n, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* _Jean-François Alcover_, May 08 2023, after _R. J. Mathar_ *)
%Y A260039 Row sums are A046715. Cf. A260040.
%K A260039 nonn,tabl
%O A260039 1,2
%A A260039 _N. J. A. Sloane_, Jul 22 2015