A260073 Number of triples {x, y, x mod y} of three distinct divisors of n.
0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 3, 0, 1, 0, 0, 0, 3, 0, 3, 1, 1, 0, 6, 0, 1, 0, 2, 0, 8, 0, 0, 0, 1, 0, 9, 0, 1, 1, 5, 0, 9, 0, 2, 0, 1, 0, 10, 0, 3, 0, 3, 0, 6, 1, 4, 1, 1, 0, 23, 0, 1, 2, 0, 0, 7, 0, 3, 0, 6, 0, 18, 0, 1
Offset: 1
Keywords
Examples
a(6) = 1 because x = 3, y = 2, x mod y = 1 and 3, 2, 1 are distinct divisors of 6.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A027750.
Programs
-
PARI
a(n)=my(d=divisors(n),x,y,z); sum(i=2,#d-2, y=d[i]; sum(j=i+1,#d-1, x=d[j]; z=x%y; z && n%z==0)) \\ Charles R Greathouse IV, Aug 20 2015
Extensions
Corrected and edited by Charles R Greathouse IV, Aug 20 2015
Comments