This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260080 #11 Jul 15 2015 20:38:59 %S A260080 5,18,18,9,115,208,69,373,68,430,8,214,57,1887,1255,295,880,542,5612, %T A260080 767,1562,40,853,884,753,4332,4750,6077,799,1394,639,5442,4785,440, %U A260080 7417,1290,15830,27745,3927,5701,1891,22008,8243,6031,9172,5949,43286,20778,9876,12472 %N A260080 Least positive integer k such that prime(k*n)^2 - 2 = prime(i*n)*prime(j*n) for some integers 0 < i < j. %C A260080 Conjecture: a(n) exists for any n > 0. %D A260080 Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187. %H A260080 Zhi-Wei Sun, <a href="/A260080/b260080.txt">Table of n, a(n) for n = 1..105</a> %H A260080 Zhi-Wei Sun, <a href="http://arxiv.org/abs/1402.6641">Problems on combinatorial properties of primes</a>, arXiv:1402.6641 [math.NT], 2014. %e A260080 a(1) = 5 since prime(5*1)^2-2 = 11^2-2 = 119 = 7*17 = prime(4*1)*prime(7*1). %e A260080 a(66) = 149073 since prime(149073*66)^2-2 = 176365951^2-2 = 31104948672134399 = 3160879*9840600881 = prime(3448*66)*prime(9840600881*66). %t A260080 Dv[n_]:=Divisors[Prime[n]^2-2] %t A260080 L[n_]:=Length[Dv[n]] %t A260080 P[k_,n_]:=L[k*n]==4&&PrimeQ[Part[Dv[k*n],2]]&&Mod[PrimePi[Part[Dv[k*n],2]],n]==0&&PrimeQ[Part[Dv[k*n],3]]&&Mod[PrimePi[Part[Dv[k*n],3]],n]==0 %t A260080 Do[k=0;Label[bb];k=k+1;If[P[k,n],Goto[aa]];Goto[bb];Label[aa];Print[n," ", k];Continue,{n,1,50}] %Y A260080 Cf. A000040, A062326, A253257, A257926, A257938, A260078. %K A260080 nonn %O A260080 1,1 %A A260080 _Zhi-Wei Sun_, Jul 15 2015