This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260082 #7 Jul 15 2015 10:06:41 %S A260082 2,2,2,21,9,10,12,14,47,32,32,171,177,175,64,187,330,206,77,467,4,126, %T A260082 127,355,279,982,249,1930,105,109,659,801,269,777,703,125,819,1347, %U A260082 904,1153,549,2344,757,1301,1793,303,105,3168,2645,3055,110,1619,1580,2423,220,965,1397,84,988,322 %N A260082 Least positive integer k such that (prime(k*n)-1)^2 = (prime(i*n)-1)*(prime(j*n)-1) for some integers 0 < i < j. %C A260082 Conjecture: a(n) exists for any n > 0. In general, for any nonzero integer m and positive integer n there are distinct positive integers i,j,k such that (prime(i*n)+m)*(prime(j*n)+m) = (prime(k*n)+m)^2. %D A260082 Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187. %H A260082 Zhi-Wei Sun, <a href="/A260082/b260082.txt">Table of n, a(n) for n = 1..100</a> %H A260082 Zhi-Wei Sun, <a href="http://arxiv.org/abs/1402.6641">Problems on combinatorial properties of primes</a>, arXiv:1402.6641 [math.NT], 2014. %e A260082 a(4) = 21 since (prime(21*4)-1)^2 = 432^2 = 18*10368 = (prime(2*4)-1)*(prime(318*4)-1). %e A260082 a(61) = 15160 since (prime(15160*61)-1)^2 = 14242116^2 = 47316*4286876916 = (prime(80*61)-1)*(prime(3326491*61)-1). %t A260082 Dv[n_]:=Divisors[(Prime[n]-1)^2] %t A260082 L[n_]:=Length[Dv[n]] %t A260082 P[k_,n_,i_]:=PrimeQ[Part[Dv[k*n],i]+1]&&Mod[PrimePi[Part[Dv[k*n],i]+1],n]==0 %t A260082 Do[k=0;Label[bb];k=k+1; Do[If[P[k,n,i]&&P[k,n,L[k*n]-i+1],Goto[aa]],{i,1,L[k*n]/2}];Goto[bb];Label[aa];Print[n, " ", k];Continue,{n,1,60}] %Y A260082 Cf. A000040, A257926, A257928, A257938, A260078, A260080. %K A260082 nonn %O A260082 1,1 %A A260082 _Zhi-Wei Sun_, Jul 15 2015