This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260096 #18 May 23 2020 13:14:03 %S A260096 0,1,2,3,4,5,6,7,8,9,10,32,50,64,65,80,81,82,83,84,96,97,98,210,54320, %T A260096 54321,64320,64321,65210,764210 %N A260096 Numbers whose decimal and hexadecimal representations both have strictly decreasing digits. %C A260096 Intersection of A009995 and A023797. - _Michel Marcus_, Jul 16 2015 %H A260096 <a href="https://twitter.com/wacnt/status/621469453138538496">Tweet by Wolfram|Alpha Can't</a> %e A260096 54321 belongs to the sequence because its digits are strictly decreasing and its hexadecimal representation, D431, also has strictly decreasing digits. %e A260096 976210 doesn't belong to the sequence because, while its decimal digits are strictly decreasing, its hexadecimal representation EE552 is not strictly decreasing. %t A260096 dec[v_] := 0 > Max@ Differences@ v; Select[ Union[ FromDigits/@ Select[ Flatten[ Permutations/@ Subsets[ Range[0, 9]], 1], dec]], dec@ IntegerDigits[#, 16] &] (* _Giovanni Resta_, Jul 16 2015 *) %o A260096 (Python) %o A260096 def decreasing(top): %o A260096 if top==0: %o A260096 yield [] %o A260096 return %o A260096 for d in range(top): %o A260096 if d>0: %o A260096 yield [d] %o A260096 for s in decreasing(d): %o A260096 yield [d]+s %o A260096 def to_int(s): %o A260096 t = 0 %o A260096 for d in s: %o A260096 t = t*10+d %o A260096 return t %o A260096 def to_hex(n): %o A260096 out = [] %o A260096 if n==0: %o A260096 return [0] %o A260096 while n: %o A260096 m = n%16 %o A260096 n = (n-m)//16 %o A260096 out.insert(0,m) %o A260096 return out %o A260096 def is_decreasing(h): %o A260096 m = h[0] %o A260096 for d in h[1:]: %o A260096 if d>=m: %o A260096 return False %o A260096 m = d %o A260096 return True %o A260096 ns = sorted(to_int(s) for s in list(decreasing(10))) %o A260096 a = [n for n in ns if is_decreasing(to_hex(n))] %Y A260096 Cf. A009995 (in base 10 only), A023797 (in base 16 only). %K A260096 nonn,base,fini,full %O A260096 1,3 %A A260096 _Christian Perfect_, Jul 16 2015