This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260117 #16 Sep 29 2017 23:23:50 %S A260117 6,15,78,990,8385,128271,2293011,46923828,1062489753,27403863105, %T A260117 757016521030,24028339652778,807863408487460,29499468896141965, %U A260117 1162871296355724735,49093065731151773880,2200689210818047715703,104755000778178115071015,5271254575974180914006953 %N A260117 Smallest triangular number that is pandigital in base n. %C A260117 Presumably, lim_{n->infinity} a(n)/A049363(n) = 1. %H A260117 Chai Wah Wu, <a href="/A260117/b260117.txt">Table of n, a(n) for n = 2..28</a> (n = 2..22 from Jon E. Schoenfield) %e A260117 Using the letters a, b, c, ... to represent digit values 10, 11, 12, ..., the terms are as follows: %e A260117 . %e A260117 n a(n) in base 10 a(n) in base n %e A260117 == ========================= ============== %e A260117 2 6 110_2 %e A260117 3 15 120_3 %e A260117 4 78 1032_4 %e A260117 5 990 12430_5 %e A260117 6 8385 102453_6 %e A260117 7 128271 1042653_7 %e A260117 8 2293011 10576423_8 %e A260117 9 46923828 107258346_9 %e A260117 10 1062489753 1062489753_10 %e A260117 11 27403863105 10692847a53_11 %e A260117 12 757016521030 10286b37459a_12 %e A260117 13 24028339652778 1053b2a49c786_13 %e A260117 14 807863408487460 1036cb2487d59a_14 %e A260117 15 29499468896141965 102568d3be749ca_15 %e A260117 16 1162871296355724735 102359486ac7edbf_16 %e A260117 17 49093065731151773880 1029a46d78g53cbef_17 %e A260117 18 2200689210818047715703 10237c486geh5bdaf9_18 %e A260117 19 104755000778178115071015 10236a47589cgdfeibh_19 %e A260117 20 5271254575974180914006953 10235i96e4jb8gfcah7d_20 %o A260117 (PARI) A049363(n)=if(n>1, (n^n-n)/(n-1)^2+n^(n-2)*(n-1)-1, 1) %o A260117 a(n)=my(k=ceil((sqrt(8*A049363(n)+1)-1)/2),t); while(#Set(digits(t=binomial(k+1,2),n))<n, k++); t \\ _Charles R Greathouse IV_, Jul 17 2015 %Y A260117 Cf. A049363. %K A260117 nonn,base %O A260117 2,1 %A A260117 _Jon E. Schoenfield_, Jul 17 2015