This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260141 #12 Jul 19 2015 09:10:45 %S A260141 1,3,2,7,15,7,5,13,3,65,91,31,255,31,13,85,31,35,127,51,217,1105,403, %T A260141 403,7,73,221,2555,127,635,217,527,1651,595,33,949,133,19,267,77,511, %U A260141 6851,11,65535,89,119,665,1397,21845,77,143,4123,3937,6141,15841,1157,2047,5621,33,1397,15,6141,267 %N A260141 Numerators of the distinct common values of sigma(n)/n and m/phi(m) in the order which they occur when n and m increase. %C A260141 To be considered as common, a value must have appeared for some N in both sequences sigma(n)/n (A017665/A017666) and n/eulerphi(n) (A109395/A076512), with 1<=n<=N. %e A260141 sigma(n)/n starts: 1/1, 3/2, 4/3, 7/4, 6/5, 2/1, 8/7, 15/8, 13/9, 9/5, ... %e A260141 m/phi(m) starts: 1/1, 2/1, 3/2, 2/1, 5/4, 3/1, 7/6, 2/1, 3/2, 5/2, ... %e A260141 The 1st common value is 1/1 = sigma(1)/1 = 1/eulerphi(1). %e A260141 The 2nd common value is 3/2 = 3/eulerphi(3) = sigma(2)/2. %e A260141 The 3rd common value is 2/1 = sigma(6)/6 = 2/eulerphi(2). %e A260141 The sequence of ratios begin: 1, 3/2, 2, 7/3, 15/8, 7/4, 5/2, 13/6, 3, 65/24, 91/36, 31/10, 255/128, 31/12, ... %e A260141 So this sequence begins 1, 3, 2, ... %o A260141 (PARI) already(vsv, val, vsi, n) = {pos=vecsearch(vsv, val); if (pos, until(vsv[pos] < val, pos--); pos++; pos = vsi[pos] <= n); pos;} %o A260141 lista(nn) = {vrat = [1]; vsrat = [1]; ve = vector(nn, k, k/eulerphi(k)); vs = vector(nn, k, sigma(k)/k); vesv = vecsort(ve); vesi = vecsort(ve,,1); vssv = vecsort(vs); vssi = vecsort(vs,,1); print1(1, ", "); for (n=2, nn, rn = vs[n]; if (!vecsearch(vsrat, rn) && (already(vesv, rn, vesi, n)), print1(numerator(rn), ", "); vrat = concat(vrat, rn); vsrat = vecsort(vrat,,8), rn = ve[n]; if (!vecsearch(vsrat, rn) && (already(vssv, rn, vssi, n)), print1(numerator(rn), ", "); vrat = concat(vrat, rn); vsrat = vecsort(vrat,,8););););} %Y A260141 Cf. A259850, A260142 (denominators). %K A260141 nonn,frac %O A260141 1,2 %A A260141 _Michel Marcus_, Jul 17 2015