This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260142 #10 Jul 19 2015 09:10:59 %S A260142 1,2,1,3,8,4,2,6,1,24,36,10,128,12,4,32,16,12,42,16,72,384,120,144,2, %T A260142 24,64,864,36,216,60,160,504,192,16,288,54,6,128,24,144,1920,4,32768, %U A260142 32,32,216,432,8192,20,48,1296,1080,1760,4320,384,704,1728,10,360,4,2816,80 %N A260142 Denominators of the distinct common values of sigma(n)/n and m/phi(m) in the order which they occur when n and m increase. %C A260142 To be considered as common, a value must have appeared for some N in both sequences sigma(n)/n (A017665/A017666) and n/eulerphi(n) (A109395/A076512), with 1<=n<=N. %e A260142 sigma(n)/n starts: 1/1, 3/2, 4/3, 7/4, 6/5, 2/1, 8/7, 15/8, 13/9, 9/5, ... %e A260142 m/phi(m) starts: 1/1, 2/1, 3/2, 2/1, 5/4, 3/1, 7/6, 2/1, 3/2, 5/2, ... %e A260142 The 1st common value is 1/1 = sigma(1)/1 = 1/eulerphi(1). %e A260142 The 2nd common value is 3/2 = 3/eulerphi(3) = sigma(2)/2. %e A260142 The 3rd common value is 2/1 = sigma(6)/6 = 2/eulerphi(2). %e A260142 The sequence of ratios begin: 1, 3/2, 2, 7/3, 15/8, 7/4, 5/2, 13/6, 3, 65/24, 91/36, 31/10, 255/128, 31/12, ... %e A260142 So this sequence begins 1, 2, 1, ... %o A260142 (PARI) already(vsv, val, vsi, n) = {pos=vecsearch(vsv, val); if (pos, until(vsv[pos] < val, pos--); pos++; pos = vsi[pos] <= n); pos;} %o A260142 lista(nn) = {vrat = [1]; vsrat = [1]; ve = vector(nn, k, k/eulerphi(k)); vs = vector(nn, k, sigma(k)/k); vesv = vecsort(ve); vesi = vecsort(ve,,1); vssv = vecsort(vs); vssi = vecsort(vs,,1); print1(1, ", "); for (n=2, nn, rn = vs[n]; if (!vecsearch(vsrat, rn) && (already(vesv, rn, vesi, n)), print1(denominator(rn), ", "); vrat = concat(vrat, rn); vsrat = vecsort(vrat,,8), rn = ve[n]; if (!vecsearch(vsrat, rn) && (already(vssv, rn, vssi, n)), print1(denominator(rn), ", "); vrat = concat(vrat, rn); vsrat = vecsort(vrat,,8););););} %Y A260142 Cf. A259850, A260141 (numerators). %K A260142 nonn,frac %O A260142 1,2 %A A260142 _Michel Marcus_, Jul 17 2015