This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260143 #21 Feb 16 2025 08:33:26 %S A260143 2,3,14,15,21,22,33,34,35,38,39,44,45,57,58,75,76,85,86,87,93,94,95, %T A260143 98,99,116,117,118,119,122,123,133,134,135,136,141,142,143,145,146, %U A260143 147,148,158,159,171,172,177,178,201,202,203,205,206,213,214,215,217,218,219,230,231,244,245 %N A260143 Runs of consecutive integers with same prime signature. %C A260143 This sequence is infinite, see A189982 and Theorem 4 in Goldston-Graham-Pintz-Yıldırım. - _Charles R Greathouse IV_, Jul 17 2015 %H A260143 Charles R Greathouse IV, <a href="/A260143/b260143.txt">Table of n, a(n) for n = 1..10000</a> %H A260143 D. A. Goldston, S. W. Graham, J. Pintz, and C. Y. Yıldırım, <a href="http://arxiv.org/abs/0803.2636">Small gaps between almost primes, the parity problem, and some conjectures of Erdos on consecutive integers</a>, arXiv:0803.2636 [math.NT], 2008. %H A260143 MathOverflow, <a href="http://mathoverflow.net/questions/32412">Question on consecutive integers with similar prime factorizations</a> %H A260143 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeSignature.html">Prime Signature</a> %H A260143 OEIS Wiki, <a href="http://oeis.org/wiki/Prime_signatures">Prime signatures</a> %e A260143 Runs begin: %e A260143 (terms) (prime signature) %e A260143 {2, 3}, [1] %e A260143 {14, 15}, [1,1] %e A260143 {21, 22}, [1,1] %e A260143 {33, 34, 35}, [1,1] %e A260143 {38, 39}, [1,1] %e A260143 {44, 45}, [1,2] %e A260143 {57, 58}, [1,1] %e A260143 {75, 76}, [1,2] %e A260143 {85, 86, 87}, [1,1] %e A260143 {93, 94, 95}, [1,1] %e A260143 {98, 99}, [1,2] %e A260143 ... %t A260143 Split[Range[2,250], Sort[FactorInteger[#1][[All, 2]]] === Sort[FactorInteger[#2][[All, 2]]]&] // Select[#, Length[#] > 1&]& // Flatten %o A260143 (PARI) is(n)=my(f=vecsort(factor(n)[,2])); f==vecsort(factor(n-1)[,2]) || f==vecsort(factor(n+1)[,2]) \\ _Charles R Greathouse IV_, Jul 17 2015 %o A260143 (Python) %o A260143 from sympy import factorint %o A260143 def aupto(limit): %o A260143 aset, prevsig = {2}, [1] %o A260143 for k in range(3, limit+2): %o A260143 sig = sorted(factorint(k).values()) %o A260143 if sig == prevsig: aset.update([k - 1, k]) %o A260143 prevsig = sig %o A260143 return sorted(aset) %o A260143 print(aupto(250)) # _Michael S. Branicky_, Sep 20 2021 %Y A260143 Main sequence is A052213. %K A260143 nonn,easy,tabf %O A260143 1,1 %A A260143 _Jean-François Alcover_, Jul 17 2015