cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260154 Number of square lattice walks of length 2n starting and ending at (0,0) and avoiding the West quadrant {(i,j): i < -|j|}.

This page as a plain text file.
%I A260154 #33 Apr 11 2022 10:14:20
%S A260154 1,3,22,209,2256,26296,322696,4109131,53802868,719967204,9804170810,
%T A260154 135438150718,1893565055948,26744778067560,381061505993160,
%U A260154 5470780479977505,79066952734823832,1149467155656304276,16798622641884084940,246654934301978877376
%N A260154 Number of square lattice walks of length 2n starting and ending at (0,0) and avoiding the West quadrant {(i,j): i < -|j|}.
%H A260154 Alois P. Heinz, <a href="/A260154/b260154.txt">Table of n, a(n) for n = 0..830</a>
%H A260154 M. Bousquet-Mélou, <a href="http://arxiv.org/abs/1511.02111">Plane lattice walks avoiding a quadrant</a>, arXiv:1511.02111 [math.CO], 2015.
%F A260154 a(2n) = 16^n/9 * ( 3* (1/2)_n^2/ (2)_n^2 + 8 *(1/2)_n* (7/6)_n/ (2)_n/ (4/3)_n - 2 *(1/2)_n*(5/6)_n/ (2)_n/ (5/3)_n), where (a)_n is the ascending factorial (proved).
%F A260154 D-finite with recurrence n*(n-1)*(3*n+2)*(4*n-5)*(3*n+1)*(4*n-7)*(n+1)^2*a(n) -4*n*(n-1)*(4*n-1)*(2*n-1)*(4*n-7)*(54*n^3-45*n^2-49*n-10)*a(n-1) +16*(n-1)*(4*n-5)*(2*n-1)*(2*n-3)*(4*n+1)*(108*n^3-396*n^2+361*n+5)*a(n-2) -64*(6*n-11)*(4*n-1)*(6*n-13)*(2*n-1)*(2*n-3)*(4*n+1)*(-5+2*n)^2*a(n-3)=0. _Alois P. Heinz_, Nov 10 2015
%F A260154 D-finite with recurrence n*(n-1)*(3*n+2)*(3*n+1)*(n+1)^2*a(n) -4*n*(n-1)*(180*n^4-360*n^3+287*n^2-71*n+2)*a(n-1) +16*(n-1)*(1440*n^5-10080*n^4+29024*n^3-42768*n^2+31867*n-9465)*a(n-2) -64*(2*n-5)*(2880*n^5-30240*n^4+128608*n^3-277008*n^2+301706*n-132501)*a(n-3) +2048*(2*n-5)*(2*n-7)*(360*n^4-4320*n^3+19474*n^2-39156*n+29691)*a(n-4) -16384*(6*n-23)*(6*n-25)*(2*n-5)*(2*n-7)*(2*n-9)^2*a(n-5)=0. - _R. J. Mathar_, Apr 11 2022
%e A260154 When n=1, only the walks NS, EW, SN contribute.
%p A260154 a:= proc(n) option remember; `if`(n<3, [1, 3, 22][n+1],
%p A260154      (4*n*(n-1)*(4*n-1)*(54*n^3-45*n^2-49*n-10)*(2*n-1)*
%p A260154       (4*n-7)*a(n-1) -(16*(n-1))*(4*n-5)*(2*n-1)*(2*n-3)*
%p A260154       (4*n+1)*(108*n^3-396*n^2+361*n+5)*a(n-2) +(64*(6*n-11))*
%p A260154       (4*n-1)*(6*n-13)*(2*n-1)*(2*n-3)*(4*n+1)*(-5+2*n)^2*a(n-3))
%p A260154       /((3*n+2)*(4*n-5)*(3*n+1)*(4*n-7)*n*(n-1)*(n+1)^2))
%p A260154     end:
%p A260154 seq(a(n), n=0..25);  # _Alois P. Heinz_, Nov 10 2015
%t A260154 a[n_] := a[n] = If[n<3, {1, 3, 22}[[n+1]], (4(54n^3 - 45n^2 - 49n - 10)(4n - 7)(n-1)(2n - 1)(4n - 1) n a[n-1] - (16(n-1)(4n - 5)(2n - 1)(2n - 3)(4n + 1)(108n^3 - 396n^2 + 361n + 5) a[n-2]) + (6n - 13)(64(6n - 11))(2n - 3) (2n - 1)(4n - 1)(4n + 1)(2n - 5)^2 a[n-3])/((3n + 2)(4n - 5)(3n + 1)(4n - 7) n(n-1)(n+1)^2)]; Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Dec 04 2016 after _Alois P. Heinz_ *)
%Y A260154 Cf. A260153.
%K A260154 nonn,easy,walk
%O A260154 0,2
%A A260154 _Mireille Bousquet-Mélou_, Nov 09 2015