cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260155 Number of walks of length 2n on the square lattice that start and end at (0,0) and avoid the negative quadrant.

This page as a plain text file.
%I A260155 #24 Jul 25 2018 08:06:52
%S A260155 1,4,32,318,3530,41944,522010,6719018,88726840,1195527822,16373466714,
%T A260155 227280520316,3190715296368,45226324937400,646392346047930,
%U A260155 9305481272839662,134815491199174476,1964195875748858812,28761433275110249932,423052415434610432816
%N A260155 Number of walks of length 2n on the square lattice that start and end at (0,0) and avoid the negative quadrant.
%H A260155 Alois P. Heinz, <a href="/A260155/b260155.txt">Table of n, a(n) for n = 0..800</a>
%H A260155 M. Bousquet-Mélou, <a href="http://arxiv.org/abs/1511.02111">Plane lattice walks avoiding a quadrant</a>, arXiv:1511.02111 [math.CO], 2015.
%F A260155 a(n) = 4*16^n/ 3^5 * ( 3^4 *f(1/2,n)* f(1/2,n+1)/ (f(2,n) * f(2,n+1)) + 4 *(24*n^2+60*n +29)* f(1/2,n)* f(7/6,n) /(f(2,n+1) *f(4/3, n+1)) -2 *(12*n^2+30*n+5) * f(1/2,n)*f(5/6,n) /(f(2,n+1)*f(5/3,n+1)) ) where f(m,n) is the ascending factorial m*(m+1)*...*(m+n-1) (proved).
%e A260155 When n=1 the four walks are NS, EW, SN, WE.
%t A260155 f[x_, n_] := x Pochhammer[x+1, n-1];
%t A260155 a[n_] := 4 16^n/3^5 (3^4 f[1/2, n] f[1/2, n + 1]/(f[2, n] f[2, n + 1]) + 4 (24n^2 + 60n + 29) f[1/2, n] f[7/6, n]/(f[2, n + 1] f[4/3, n + 1]) - 2 (12n^2 + 30n + 5) f[1/2, n] f[5/6, n]/(f[2, n + 1] f[5/3, n + 1]));
%t A260155 Table[a[n], {n, 0, 19}] (* _Jean-François Alcover_, Jul 25 2018 *)
%Y A260155 Cf. A060898 for walks starting from (0,0) but in which the final point is not prescribed.
%K A260155 nonn,easy,walk
%O A260155 0,2
%A A260155 _Mireille Bousquet-Mélou_, Nov 09 2015