cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260182 Smallest square that is pandigital in base n.

This page as a plain text file.
%I A260182 #40 Dec 08 2019 04:46:25
%S A260182 4,64,225,5329,38025,314721,3111696,61058596,1026753849,31529329225,
%T A260182 892067027049,307197306432025,803752551280900,29501156485626049,
%U A260182 1163446635475467225,830482914641378019961,2200667320658951859841,104753558229986901966129,5272187100814113874556176
%N A260182 Smallest square that is pandigital in base n.
%C A260182 Compare this sequence with A260117, Smallest triangular number that is pandigital in base n. Presumably, lim_{n->infinity} A260117(n)/A049363(n) = 1, but the same cannot be true for this sequence: the sum of the base-n digits of a number that is pandigital in base n must be 0+1+2+...+n-1 = binomial(n,2), but there are certain values of n for which no n-digit square can have a digit sum of binomial(n,2); for such values of n, a(n) must have more than n digits in base n. [E.g., the base-13 expansion of every square has a digit sum s == {0,1,4,9} (mod 12) (cf. A096008), but a square that is pandigital in base 13 and has exactly 13 digits would have a digit sum s = 78 == 6 (mod 12), so no such number exists; a 14-digit base-13 pandigital square would have each of the digits 0..12 exactly once except for one duplicated digit, which would have to be 3, 6, 7, or 10 (to yield a digit sum of 81, 84, 85, or 88, whose residues modulo 12 are 9, 0, 1, and 4, respectively). - _Jon E. Schoenfield_, Mar 23 2019]
%C A260182 The values of n for which there exists no pandigital square that is exactly n digits long (in base n) begin with 2, 3, 5, 13, 17, 21, ...; presumably, for all such values of n, a(n) is exactly n+1 base-n digits long.
%C A260182 In base 2, there are no 2-digit squares at all, so a(2) must have more than 2 binary digits. For n = 3, 5, 13, 17, 21, ..., there exists no square, regardless of its number of digits, whose base-n digit sum equals binomial(n,2); see A260191.
%H A260182 Chai Wah Wu, <a href="/A260182/b260182.txt">Table of n, a(n) for n = 2..28</a> (n = 2..22 from Jon E. Schoenfield)
%H A260182 Rosetta Code, <a href="http://rosettacode.org/wiki/First_perfect_square_in_base_N_with_N_unique_digits">First perfect square in base N with N unique digits</a>, lists a(n) for n = 2..39.
%e A260182 Using the letters a, b, c, ... to represent digit values 10, 11, 12, ..., the terms begin as follows:
%e A260182 .
%e A260182    n            a(n) in base 10          a(n) in base n
%e A260182   ==  =========================  ======================
%e A260182    2                          4                   100_2
%e A260182    3                         64                  2101_3
%e A260182    4                        225                  3201_4
%e A260182    5                       5329                132304_5
%e A260182    6                      38025                452013_6
%e A260182    7                     314721               2450361_7
%e A260182    8                    3111696              13675420_8
%e A260182    9                   61058596             136802574_9
%e A260182   10                 1026753849            1026753849_10
%e A260182   11                31529329225           1240a536789_11
%e A260182   12               892067027049          124a7b538609_12
%e A260182   13            307197306432025        10254773ca86b9_13
%e A260182   14            803752551280900        10269b8c57d3a4_14
%e A260182   15          29501156485626049       102597bace836d4_15
%e A260182   16        1163446635475467225      1025648cfea37bd9_16
%e A260182   17      830482914641378019961    101246a89cgfb357ed_17
%e A260182   18     2200667320658951859841    10236b5f8eg4ad9ch7_18
%e A260182   19   104753558229986901966129   10234dhbg7ci8f6a9e5_19
%e A260182   20  5272187100814113874556176  1024e7cdi3hb695fja8g_20
%Y A260182 Cf. A007953, A049363, A096008, A249034, A260117, A260191.
%K A260182 nonn,base
%O A260182 2,1
%A A260182 _Jon E. Schoenfield_, Jul 17 2015