This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260210 #24 Aug 18 2015 12:25:05 %S A260210 1,5,1,1,3,9,13,11,1,11,34,33,31,38,58,56,24,35,62,38,23,27,96,84,2, %T A260210 66,106,74,10,31,8,34,58,26,26,144,150,140,167,137,31,107,78,157,1, %U A260210 103,165,97,111,60,196,48,97,259,155,175,244,13,269,34,184,222,54 %N A260210 A034602(n) modulo prime(n). %C A260210 p is a Wolstenholme prime (A088164) iff a(n) = 0. This holds for n = 1944 and n = 157504. %C A260210 When performing a search for Wolstenholme primes, one can choose an integer constant c >= 0 and record all primes with a(n) <= c in order to get a larger data set. %C A260210 The values here appear to have a nicer asymptotic growth behavior than those in A260209. %C A260210 It appears that A260209(n)/a(n) = A001248(n). %C A260210 The formula only returns integers for primes greater than 3. - _Robert G. Wilson v_, Jul 29 2015 %H A260210 Felix Fröhlich, <a href="/A260210/b260210.txt">Table of n, a(n) for n = 3..10000</a> %F A260210 A034602(n)/prime(n) = A260209(n)/prime(n)^2, for n>2. - _Robert G. Wilson v_, Jul 29 2015 %t A260210 f[n_] := Block[{p = Prime@ n}, (Mod[ Binomial[2p - 1, p - 1], p^4] - 1)/p^3]; Array[f, 60, 3] (* _Robert G. Wilson v_, Jul 29 2015 *) %o A260210 (PARI) a(n) = p=prime(n); lift(Mod(binomial(2*p-1, p-1)\p^3, p)) %Y A260210 Cf. A034602, A088164, A241014, A244801, A250406, A258367, A260209. %K A260210 nonn %O A260210 3,2 %A A260210 _Felix Fröhlich_, Jul 19 2015