This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260224 #24 Jul 20 2025 23:50:39 %S A260224 3,5,11,13,31,53,113,131,151,311,313,331,353,1151,1153,1511,1531,1553, %T A260224 3313,3331,3511,3533,5113,5153,5333,5351,5531,11113,11131,11311,11351, %U A260224 11353,11551,13151,13313,13331,13513,13553,15131,15313,15331,15511,15551 %N A260224 Primes having only {1, 3, 5} as digits. %H A260224 Jason Bard, <a href="/A260224/b260224.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Chai Wah Wu) %H A260224 <a href="/index/Pri#PrimesWithDigits">Index to entries for primes with digits in a given set</a> %t A260224 Select[Prime[Range[3 10^3]], Complement[IntegerDigits[#], {3, 5, 1}]=={} &] %t A260224 Select[Flatten[Table[FromDigits/@Tuples[{1,3,5},n],{n,5}]],PrimeQ] (* _Harvey P. Dale_, Mar 03 2020 *) %o A260224 (Magma) [p: p in PrimesUpTo(40000) | Set(Intseq(p)) subset [3, 5, 1]]; %o A260224 (Python) %o A260224 from gmpy2 import is_prime, mpz %o A260224 from itertools import product %o A260224 A260224_list = [int(''.join(x)) for n in range(1,10) for x in product('135',repeat=n) if is_prime(mpz(''.join(x)))] # _Chai Wah Wu_, Jul 21 2015 %Y A260224 Subsequence of A030096. A004022, A020451, A020453, and A020462 are subsequences. %Y A260224 Cf. similar sequences listed in A260223. %Y A260224 Cf. A020451, A020453, A020462, A385776. %K A260224 nonn,easy,base %O A260224 1,1 %A A260224 _Vincenzo Librandi_, Jul 21 2015