A260232 Least prime p such that pi(p*n) = n*pi(q*n) for some prime q.
2, 5, 13, 67, 23, 19, 433, 443, 107, 41, 61, 251, 239, 1987, 541, 491, 1093, 499, 421, 179, 2137, 1297, 1097, 101, 103, 2411, 1283, 1847, 379, 4993, 8329, 5563, 4297, 5639, 9587, 1867, 5113, 6691, 3691, 1193, 4663, 2971, 27733, 7121, 593, 2273, 607, 6047, 4217, 2609
Offset: 1
Keywords
Examples
a(4) = 67 since pi(67*4) = 56 = 4*14 = 4*pi(11*4) with 11 and 67 both prime.
References
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..300
- Zhi-Wei Sun, Checking the conjecture for n = 1..10 and r = a/b with a,b = 1..100
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Programs
-
Mathematica
f[n_]:=PrimePi[n]; Do[k=0;Label[bb];k=k+1;If[Mod[f[Prime[k]*n],n]>0,Goto[bb]];Do[If[f[Prime[k]n]==n*f[Prime[j]*n],Goto[aa]];If[f[Prime[k]n]
Comments