A260237 Numerators of the characteristic polynomials of the von Mangoldt function matrix.
0, 1, -1, -1, -1, 1, 1, 11, -1, -1, 0, -3, -9, 5, 1, 0, 3, 81, 7, -73, -1, 0, 3, 73, -1261, -1183, 53, 1, 0, -3, -1231, 5251, 8989, 1451, -731, -1, 0, 0, 7, 397, -12491, -19877, -15047, 1567, 1, 0, 0, 0, -7, -1483, 50111, 69761, 45959, -5261, -1
Offset: 1
Examples
The first term set to zero is not part of the characteristic polynomials. It is only there for the formatting of the table. { {0}, {1, -1}, {-1, -1, 1}, {1, 11, -1, -1}, {0, -3, -9, 5, 1}, {0, 3, 81, 7, -73, -1}, {0, 3, 73, -1261, -1183, 53, 1}, {0, -3, -1231, 5251, 8989, 1451, -731, -1}, {0, 0, 7, 397, -12491, -19877, -15047, 1567, 1}, {0, 0, 0, -7, -1483, 50111, 69761, 45959, -5261,-1} }
Crossrefs
Denominators in A260238.
Programs
-
Mathematica
Clear[nnn, nn, T, n, k, x]; nnn = 9; T[n_, k_] := T[n, k] = Which[n < 1 || k < 1, 0, n == 1 || k == 1, 1, k > n, T[k, n], n > k, T[k, Mod[n, k, 1]], True, -Sum[T[n, i], {i, n - 1}]]; b = Table[CoefficientList[CharacteristicPolynomial[Table[Table[T[n, k]/n, {k, 1, nn}], {n, 1, nn}], x], x], {nn, 1, nnn}]; Flatten[{0,Numerator[b]}]
Comments