cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A260886 Least prime p such that 3 + 4*prime(p*n) = 5*prime(q*n) for some prime q.

Original entry on oeis.org

2, 157, 199, 3539, 1973, 9241, 14629, 167, 48281, 2207, 313, 30631, 35993, 33863, 23, 23, 7963, 17077, 11069, 6043, 4931, 3697, 2339, 14153, 35311, 63149, 111143, 491, 247193, 464237, 2293, 12101, 727, 61403, 243437, 40289, 4337, 241, 2719, 13933, 21817, 6803, 52813, 451279, 166409, 45631, 109891, 490969, 153563, 9127
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 02 2015

Keywords

Comments

Conjecture: Let a,b,c be pairwise relatively prime positive integers with a+b+c even and a not equal to b. Then, for any positive integer n, there are primes p and q such that a*prime(p*n) - b*prime(q*n) = c.
This includes the conjectures in A260252 and A260882 as special cases.
For example, for a = 7, b = 17, c = 20 and n = 30, we have 7*prime(4695851*30) - 17*prime(2020243*30) = 7*2922043519 - 17*1203194389 = 20 with 4695851 and 2020243 both prime.

Examples

			a(2) = 157 since 3 + 4*prime(157*2) = 3 + 4*2083 = 8335 = 5*prime(131*2) with 157 and 131 both prime.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Prime[n]
    PQ[p_,n_]:=PrimeQ[p]&&PrimeQ[PrimePi[p]/n]
    Do[k=0;Label[bb];k=k+1;If[PQ[(4*f[n*f[k]]+3)/5,n],Goto[aa],Goto[bb]];Label[aa];Print[n," ", f[k]];Continue,{n,1,50}]

A260232 Least prime p such that pi(p*n) = n*pi(q*n) for some prime q.

Original entry on oeis.org

2, 5, 13, 67, 23, 19, 433, 443, 107, 41, 61, 251, 239, 1987, 541, 491, 1093, 499, 421, 179, 2137, 1297, 1097, 101, 103, 2411, 1283, 1847, 379, 4993, 8329, 5563, 4297, 5639, 9587, 1867, 5113, 6691, 3691, 1193, 4663, 2971, 27733, 7121, 593, 2273, 607, 6047, 4217, 2609
Offset: 1

Views

Author

Zhi-Wei Sun, Jul 20 2015

Keywords

Comments

Conjecture: For any positive integer n, each rational number r > 0 can be written as pi(p*n)/pi(q*n) with p and q both prime.
For example, 4/7 = 416/728 = pi(479*6)/pi(919*6) with 479 and 919 both prime.
The conjecture holds trivially for n = 1 since pi(prime(m)*1) = m for all m = 1,2,3,.... Also, the conjecture implies that a(n) exists for any n > 0.

Examples

			a(4) = 67 since pi(67*4) = 56 = 4*14 = 4*pi(11*4) with 11 and 67 both prime.
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    f[n_]:=PrimePi[n]; Do[k=0;Label[bb];k=k+1;If[Mod[f[Prime[k]*n],n]>0,Goto[bb]];Do[If[f[Prime[k]n]==n*f[Prime[j]*n],Goto[aa]];If[f[Prime[k]n]
    				

A260882 Least prime p such that 2*prime(p*n)+1 = prime(q*n) for some prime q.

Original entry on oeis.org

3, 47, 3, 13, 797, 89, 2269, 733, 7877, 53, 14683, 16267, 17167, 59951, 10067, 761, 94463, 12437, 124561, 71881, 52009, 6791, 10061, 47287, 10789, 19009, 4813, 23173, 27427, 18701, 23011, 44917, 17, 70937, 883, 727, 99079, 10531, 18749, 126541, 18121, 34807, 29873, 159473, 853, 165317, 80627, 159721, 8263, 411707
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 02 2015

Keywords

Comments

Conjecture: a(n) exists for any n > 0. In general, if a > 1 and b are integers with a+b odd and gcd(a,b)=1, then for any positive integer n there are primes p and q such that a*prime(p*n)+b = prime(q*n).
This is a supplement to the conjecture in A260120. It implies that there are infinitely many Sophie Germain primes.

Examples

			a(2) = 47 since 2*prime(47*2)+1 = 2*491+1 = 983 = prime(83*2) with 47 and 83 both prime.
a(199) = 2784167 since 2*prime(2784167*199)+1 = 2*12290086499+1 = 24580172999 = prime(5399231*199) with 2784167 and 5399231 both prime.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Prime[n]
    PQ[p_,n_]:=PrimeQ[p]&&PrimeQ[PrimePi[p]/n]
    Do[k=0;Label[bb];k=k+1;If[PQ[2*f[n*f[k]]+1,n],Goto[aa],Goto[bb]];Label[aa];Print[n," ", f[k]];Continue,{n,1,50}]
Showing 1-3 of 3 results.