A260272 Decimal expansion of Sum_{n>=1} H(n)^2/(n+1)^4, where H(n) is the n-th harmonic number.
1, 2, 3, 4, 6, 3, 0, 8, 8, 7, 9, 2, 3, 9, 1, 5, 2, 3, 1, 4, 6, 1, 9, 6, 7, 2, 9, 6, 2, 0, 6, 8, 1, 3, 1, 9, 9, 9, 8, 2, 3, 3, 2, 2, 4, 7, 0, 3, 4, 2, 7, 2, 3, 3, 7, 0, 8, 9, 4, 5, 8, 6, 1, 7, 7, 4, 7, 6, 1, 5, 9, 2, 5, 0, 9, 1, 6, 4, 3, 2, 3, 9, 3, 6, 4, 1, 6, 7, 8, 4, 1, 3, 6, 7, 2, 4, 2, 4, 0, 5, 7, 4, 2, 4, 8
Offset: 0
Examples
0.1234630887923915231461967296206813199982332247034272337089458617747615925...
Links
- Jason Bard, Table of n, a(n) for n = 0..10000
- David H. Bailey and J. M. Borwein, PSLQ: An Algorithm to Discover Integer Relations
Crossrefs
Cf. A244676.
Programs
-
Mathematica
RealDigits[(37/22680)*Pi^6 - Zeta[3]^2, 10, 105] // First
Formula
(37/22680)*Pi^6 - zeta(3)^2.