This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260285 #31 Nov 09 2024 19:34:20 %S A260285 1,3,1,9,11,2,37,113,68,0,182,1102,1528,216,0,1143,11114,28947,14336, %T A260285 0,0,7553,112846,491767,554096,69264,0,0,54559,1160532,7798139, %U A260285 16354210,7066668,0,0,0,412306,12038974,117668914,407921820,397094352,45043200,0,0,0 %N A260285 Triangle read by rows: T(n,g) = number of general immersions of a circle with n crossings in a surface of arbitrary genus g, in the case that the circle is oriented and the surface is oriented. %C A260285 When transposed, displayed as an upper right triangle, and read by columns, the first line g = 0 of the table gives the number of immersions of a circle with n double points in a sphere (spherical curves) starting with n=1, the second line g = 1 gives immersions in a torus, etc. %C A260285 Row g=0 is A008986 starting with n = 1. %C A260285 For g > 0 the immersions are understood up to stable geotopy equivalence (listed curves cannot be immersed in a surface of smaller genus). - _Robert Coquereaux_, Nov 23 2015 %H A260285 R. Coquereaux, J.-B. Zuber, <a href="http://arxiv.org/abs/1507.03163">Maps, immersions and permutations</a>, arXiv preprint arXiv:1507.03163, 2015. Also J. Knot Theory Ramifications 25, 1650047 (2016), DOI: http://dx.doi.org/10.1142/S0218216516500474 %e A260285 The transposed triangle starts: %e A260285 1 3 9 37 182 1143 7553 54559 412306 %e A260285 1 11 113 1102 11114 112846 1160532 12038974 %e A260285 2 68 1528 28947 491767 7798139 117668914 %e A260285 0 216 14336 554096 16354210 407921820 %e A260285 0 0 69264 7066668 397094352 %e A260285 0 0 0 45043200 %e A260285 0 0 0 %e A260285 0 0 %o A260285 (Magma) /* Example n := 6 */ %o A260285 n:=6; %o A260285 n; // n: number of crossings %o A260285 G:=Sym(2*n); %o A260285 doubleG := Sym(4*n); %o A260285 genH:={}; %o A260285 for j in [1..(n-1)] do v := G!(1,2*j+1)(2, 2*j+2); Include(~genH,v) ; end for; %o A260285 H := PermutationGroup< 2*n |genH>; // The H=S(n) subgroup of S(2n) %o A260285 cardH:=#H; %o A260285 cardH; %o A260285 rho:=Identity(G); for j in [0..(n-1)] do v := G!(2*j+1, 2*j+2) ; rho := rho*v ; end for; %o A260285 cycrho := PermutationGroup< 2*n |{rho}>; // The cyclic subgroup Z2 generated by rho (mirroring) %o A260285 Hcycrho:=sub<G|[H,cycrho]>; // The subgroup generated by H and cycrho %o A260285 cardZp:= Factorial(2*n-1); %o A260285 beta:=G!Append([2..2*n],1); // A typical circular permutation %o A260285 Cbeta:=Centralizer(G,beta); %o A260285 bool, rever := IsConjugate(G,beta,beta^(-1)); %o A260285 cycbeta := PermutationGroup< 2*n |{rever}>; %o A260285 Cbetarev := sub<G|[Cbeta,cycbeta]>; %o A260285 psifct := function(per); %o A260285 perinv:=per^(-1); %o A260285 res:= [IsOdd(j) select (j+1)^per else j-1 + 2*n : j in [1..2*n] ]; %o A260285 resbis := [IsOdd((j-2*n)^perinv) select (j-2*n)^perinv +1 +2*n else ((j-2*n)^perinv -1)^per : j in [2*n+1..4*n] ]; %o A260285 res cat:= resbis; %o A260285 return doubleG!res; %o A260285 end function; %o A260285 numberofcycles := function(per); ess := CycleStructure(per); return &+[ess[i,2]: i in [1..#ess]]; end function; %o A260285 supernumberofcycles := function(per); return numberofcycles(psifct(per)) ; end function; %o A260285 // result given as a list genuslist (n+2-2g)^^multiplicity where g is the genus %o A260285 //case OO %o A260285 dbl, dblsize := DoubleCosetRepresentatives(G,H,Cbeta); #dblsize; %o A260285 genuslist := {* supernumberofcycles(beta^(dbl[j]^(-1))) : j in [1..#dblsize] *}; genuslist; %o A260285 quit; %o A260285 // _Robert Coquereaux_, Nov 23 2015 %Y A260285 The sum over all genera g for a fixed number n of crossings is given by sequence A260296. Cf. A008986, A260285, A260848, A260914. %K A260285 nonn,tabl,hard %O A260285 1,2 %A A260285 _Robert Coquereaux_, Jul 22 2015