cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260297 a(n) = prime(n) - (hyperfactorial(prime(n)-1) mod prime(n)).

This page as a plain text file.
%I A260297 #27 Aug 10 2015 10:39:13
%S A260297 1,2,2,6,1,5,4,1,1,12,1,31,32,1,46,23,58,11,1,1,46,78,82,55,75,91,102,
%T A260297 106,33,98,126,1,100,138,44,1,129,1,1,80,1,162,190,112,183,198,210,1,
%U A260297 1,122,89,1,177,250,241,262,187,1,217,228,282,138,306,1,25
%N A260297 a(n) = prime(n) - (hyperfactorial(prime(n)-1) mod prime(n)).
%H A260297 Matthew Campbell, <a href="/A260297/b260297.txt">Table of n, a(n) for n = 1..10000</a>
%F A260297 a(n) = prime(n) - A260178(n).
%e A260297 a(1) = prime(1) - (hyperfactorial(prime(1)-1)) mod prime(1) = 2 - hyperfactorial(2-1) mod (2) = 2 - 1 mod 2 = 2 - 1 = 1.
%t A260297 Table[Prime[n] - Mod[Hyperfactorial[Prime[n] - 1], Prime[n]], {n, 1, 70}]
%o A260297 (PARI) a(n,p=prime(n))=lift(-prod(k=1,p-1,Mod(k,p)^k)) \\ _Charles R Greathouse IV_, Jul 23 2015
%Y A260297 Cf. A000040, A002109, A260178 (hyperfactorial(prime(n)-1) mod (prime(n))).
%K A260297 nonn,easy
%O A260297 1,2
%A A260297 _Matthew Campbell_, Jul 22 2015