A260311 Difference sequence of A260317.
1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 5, 3, 2, 3, 5, 3, 2, 3, 5, 3, 5, 3, 2, 3, 5, 3, 5, 3, 2, 3, 5, 3, 5, 5, 3, 5, 3, 2, 3, 5, 3, 5, 5, 3, 5, 3, 2, 3, 5, 3, 5, 5, 3, 5, 3, 5, 5, 3, 5, 3, 2, 3, 5, 3, 5, 5, 3, 5, 3, 5, 5, 3, 5, 3
Offset: 1
Links
- Wieb Bosma, Rene Bruin, Robbert Fokkink, Jonathan Grube, Anniek Reuijl, and Thian Tromp, Using Walnut to solve problems from the OEIS, arXiv:2503.04122 [math.NT], 2025.
- The Walnut code at https://cs.uwaterloo.ca/~shallit/oeis-walnut.txt proves the conjecture. Walnut itself can be downloaded from https://cs.uwaterloo.ca/~shallit/walnut.html.
Programs
-
Mathematica
r = GoldenRatio; z = 1060; u[n_] := u[n] = Floor[n*r]; v[n_] := v[n] = Floor[n*r^2]; s[m_, n_] := v[m] + v[n]; t = Table[s[m, n], {n, 2, z}, {m, 1, n - 1}]; (* A259601 *) w = Flatten[Table[Count[Flatten[t], n], {n, 1, z}]]; p0 = Flatten[Position[w, 0]] (* A260317 *) d = Differences[p0] (* A260311 *)
Comments