A260322 Triangle read by rows: T(n,k) = logarithmic polynomial G_k^(n)(x) evaluated at x=1.
1, -1, 2, 2, -6, 6, 0, 24, -24, 24, 9, -80, 60, -120, 120, 35, 450, 240, 360, -720, 720, 230, -2142, -2310, -840, 2520, -5040, 5040, 1624, 17696, 9744, 21840, -6720, 20160, -40320, 40320, 13209, -112464, 91224, -184464, 15120, -60480, 181440, -362880, 362880
Offset: 1
Examples
Triangle begins: 1; -1, 2; 2, -6, 6; 0, 24, -24, 24; 9, -80, 60, -120, 120; 35, 450, 240, 360, -720, 720; 230, -2142, -2310, -840, 2520, -5040, 5040; ...
Links
- J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83. Gives first 10 rows. [Annotated scanned copy]
Crossrefs
Programs
-
Maple
A260322 := proc(n,r) if r = 0 then 1 ; elif n > r+1 then 0 ; else add( (-1)^(r-j*n)/(r-j*n)!/j,j=1..(r)/n) ; %*r! ; end if; end proc: for r from 1 to 20 do for n from 1 to r do printf("%a,",A260322(n,r)) ; end do: printf("\n") ; end do: # R. J. Mathar, Jul 24 2015
-
Mathematica
T[n_, k_] := Which[n == 0, 1, k > n+1, 0, True, Sum[(-1)^(n-j*k)/(n-j*k)!/j, {j, 1, n/k}]] n!; Table[T[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 30 2023 *)