A260323 Triangle read by rows: T(n,k) = logarithmic polynomial G_k^(n)(x) evaluated at x=-1.
1, 3, 2, 8, 6, 6, 24, 24, 24, 24, 89, 80, 60, 120, 120, 415, 450, 480, 360, 720, 720, 2372, 2142, 2730, 840, 2520, 5040, 5040, 16072, 17696, 10416, 21840, 6720, 20160, 40320, 40320, 125673, 112464, 151704, 184464, 15120, 60480, 181440, 362880, 362880
Offset: 1
Examples
Triangle begins: 1, 3,2, 8,6,6, 24,24,24,24, 89,80,60,120,120, 415,450,480,360,720,720, 2372,2142,2730,840,2520,5040,5040, ...
Links
- J. M. Gandhi, On logarithmic numbers, Math. Student, 31 (1963), 73-83. Gives first 10 rows. [Annotated scanned copy]
Programs
-
Maple
A260323 := proc(n,r) if r = 0 then 1 ; elif n > r+1 then 0 ; else add( 1/(r-j*n)!/j,j=1..(r)/n) ; %*r! ; end if; end proc: for r from 1 to 20 do for n from 1 to r do printf("%a,",A260323(n,r)) ; end do: printf("\n") ; end do: # R. J. Mathar, Jul 24 2015
-
Mathematica
T[n_, k_] := If[n == 0, 1, If[k > n+1, 0, Sum[1/(n - j*k)!/j, {j, 1, n/k}]]]*n!; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 25 2023, after R. J. Mathar *)