A260336 Numerators of Glaisher's J-numbers J_n.
10, 34, 910, 415826, 3786350, 455594594, 226816276970, 16546152735874, 4616987879606830, 4799607558341375462, 674014218452089817870, 339274220304210587466434, 5429636257086663655134162970, 138634566648793083166951423714
Offset: 1
Examples
10/3, 34, 910, 415826/9, 3786350, 455594594, 226816276970/3, 16546152735874, 4616987879606830, ...
Links
- J. W. L. Glaisher, On a set of coefficients analogous to the Eulerian numbers, Proc. London Math. Soc., 31 (1899), 216-235.
- Index entries for sequences related to Glaisher's numbers
Crossrefs
Cf. A047789 (denominators).
Programs
-
Maple
In := proc(n) 1/(exp(x)+exp(-x)+1) ; coeftayl(%,x=0,2*n) ; %*(2*n)!*(-1)^n*3/2 ; end proc: Jn := proc(n) (2^(2*n+1)+2)*In(n) ; end proc: A260336 := proc(n) numer(Jn(n)) ; end proc: # R. J. Mathar, Aug 02 2015
-
Mathematica
GI[n_] := SeriesCoefficient[1/(Exp[x]+Exp[-x]+1), {x, 0, 2n}]*(2n)!*(-1)^n*3/2; GJ[n_] := (2^(2n+1)+2)*GI[n]; a[n_] := Numerator[GJ[n]]; Table[a[n], {n, 1, 14}] (* Jean-François Alcover, Apr 15 2023, after R. J. Mathar *)