This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260348 #36 May 22 2025 10:21:43 %S A260348 5,8,9,18,21,24,26,27,36,44,45,50,54,60,62,63,72,80,81,86,90,108,116, %T A260348 117,126,132,134,135,140,144,152,153,162,170,171,180,200,204,206,207, %U A260348 210,216,224,225,230,234,240,242,243,252,260,261,264,270,306,312,314 %N A260348 Numbers n such that n is divisible by (10^k - digitsum(n)), where k equals the number of digits of digitsum(n). %C A260348 This sequence is infinite because all numbers with a digitsum equal to 9 are part of this sequence. %H A260348 Pieter Post, <a href="/A260348/b260348.txt">Table of n, a(n) for n = 1..12089</a> %e A260348 a(1) = 5, because 5 divided by (10 - 5) equals 1. %e A260348 a(7) = 26, because digitsum(26) = 8 and 26 divided by (10 - 8) equals 13. %e A260348 a(20) = 86, the first member of this sequence where digitsum(n) >= 10. Digitsum(86) = 14, so k = 10^2 - 14 = 86, so 86 is a member of this sequence. %t A260348 fQ[n_] := Block[{d = Total@ IntegerDigits@ n, k}, k = IntegerLength@ d; %t A260348 Divisible[n, 10^k - d]]; Select[Range@ 314, fQ] (* or *) %t A260348 Select[Range@ 314, Divisible[#, (10^(Floor[Log[10, Total@ IntegerDigits@ #]] + 1) - Total@ IntegerDigits@ #)] &] (* _Michael De Vlieger_, Aug 05 2015 *) %o A260348 (Python) %o A260348 def sod(n,m): %o A260348 kk = 0 %o A260348 while n > 0: %o A260348 kk= kk+(n%m) %o A260348 n =int(n//m) %o A260348 return kk %o A260348 for c in range (1, 10**6): %o A260348 k=len(str(sod(c,10))) %o A260348 kl=10**k-sod(c,10) %o A260348 if c%kl==0: %o A260348 print (c) %o A260348 (PARI) isok(n)=my(sd = sumdigits(n), nsd = #digits(sd)); n % (10^nsd - sd) == 0; \\ _Michel Marcus_, Aug 05 2015 %Y A260348 Cf. A005349, A007953, A113315. %K A260348 nonn,base,less %O A260348 1,1 %A A260348 _Pieter Post_, Jul 23 2015