cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260352 Numbers n such that both 2*n^2+11 and 2*(n+1)^2+11 are prime.

This page as a plain text file.
%I A260352 #12 Sep 08 2022 08:46:13
%S A260352 0,1,2,3,4,5,6,7,8,9,15,18,19,23,28,29,30,41,42,49,62,69,70,94,95,108,
%T A260352 123,136,145,151,152,189,190,204,212,215,223,227,276,277,278,281,290,
%U A260352 291,294,314,328,342,353,367,368,372,405,410,436,488,497
%N A260352 Numbers n such that both 2*n^2+11 and 2*(n+1)^2+11 are prime.
%C A260352 Both n and n+1 are terms in A092968.
%H A260352 Zak Seidov, <a href="/A260352/b260352.txt">Table of n, a(n) for n = 1..10000</a>
%t A260352 Select[Range[0, 600], PrimeQ[2 #^2 + 11] &&  PrimeQ[2 (# + 1)^2 + 11] &] (* _Vincenzo Librandi_, Jul 26 2015 *)
%o A260352 (PARI) isok(n) = isprime(2*n^2+11) && isprime(2*(n+1)^2+11); \\ _Michel Marcus_, Jul 26 2015
%o A260352 (Magma) [n: n in [0..600]| IsPrime( 2*n^2+11) and IsPrime(2*(n+1)^2+11)]; // _Vincenzo Librandi_, Jul 26 2015
%Y A260352 Cf. A092968.
%K A260352 nonn,easy
%O A260352 1,3
%A A260352 _Zak Seidov_, Jul 23 2015