cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260354 Numbers n such that 2*n^2+11, 2*(n+1)^2+11 and 2*(n+2)^2+11 are prime.

This page as a plain text file.
%I A260354 #13 Sep 08 2022 08:46:13
%S A260354 0,1,2,3,4,5,6,7,8,18,28,29,41,69,94,151,189,276,277,290,367,497,578,
%T A260354 579,580,617,618,619,620,744,810,887,903,939,1048,1049,1108,1124,1125,
%U A260354 1172,1303,1304,1305,1399,1420,1449,1614,1761,1790,1838,1861,1865,1971
%N A260354 Numbers n such that 2*n^2+11, 2*(n+1)^2+11 and 2*(n+2)^2+11 are prime.
%C A260354 n, n+1 and n+2 are terms in A092968, i.e., n and n+1 are terms in A260352.
%H A260354 Zak Seidov, <a href="/A260354/b260354.txt">Table of n, a(n) for n = 1..10000</a>
%t A260354 Select[Range[0, 2000], PrimeQ[2 #^2 + 11] && PrimeQ[2 (# + 1)^2 + 11] && PrimeQ[2 (# + 2)^2 + 11] &] (* _Vincenzo Librandi_, Jul 26 2015 *)
%o A260354 (Magma) [n: n in [0..3000]| IsPrime( 2*n^2+11) and IsPrime(2*(n+1)^2+11) and IsPrime(2*(n+2)^2+11)]; // _Vincenzo Librandi_, Jul 26 2015
%Y A260354 Subsequence of A260352 and A092968.
%K A260354 nonn,easy
%O A260354 1,3
%A A260354 _Zak Seidov_, Jul 23 2015