cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260355 Table T(n,k) read by antidiagonals. T(n,k) is the minimum value of Sum_{i=1..n} Product_{j=1..k} r_j[i] where each r_j is a permutation of {1..n}.

This page as a plain text file.
%I A260355 #42 May 26 2020 15:27:21
%S A260355 1,1,3,1,4,6,1,6,10,10,1,8,18,20,15,1,12,33,44,35,21,1,16,60,96,89,56,
%T A260355 28,1,24,108,214,231,162,84,36,1,32,198,472,600,484,271,120,45,1,48,
%U A260355 360,1043,1564,1443,915,428,165,55,1,64,648,2304,4074,4320,3089,1608,642,220,66,1,96,1188,5136,10618
%N A260355 Table T(n,k) read by antidiagonals. T(n,k) is the minimum value of Sum_{i=1..n} Product_{j=1..k} r_j[i] where each r_j is a permutation of {1..n}.
%C A260355 T(1,k) = 1. T(2,k) = A029744(k+2). T(n,1) = n(n+1)/2 (= A000217(n)).  See arXiv link for sets of permutations that achieve the value of T(n,k).
%H A260355 Chai Wah Wu, <a href="http://arxiv.org/abs/1508.02934">Permutations r_j such that ∑i∏j r_j(i) is maximized or minimized</a>, arXiv:1508.02934 [math.CO], 2015-2020.
%H A260355 Chai Wah Wu, <a href="https://arxiv.org/abs/2002.10514">On rearrangement inequalities for multiple sequences</a>, arXiv:2002.10514 [math.CO], 2020.
%F A260355 From _Chai Wah Wu_, Feb 24 2020: (Start)
%F A260355 T(n,k) >= n*(n!)^(k/n).
%F A260355 If n divides k, then T(n,k) = n*(n!)^(k/n).
%F A260355 T(n,n) = (n+1)! - n! = A001563(n).
%F A260355 T(n,2) = n*(n+1)*(n+2)/6 = A000292(n).
%F A260355 (End)
%e A260355 (Partially filled in) table starts (with n rows and k columns):
%e A260355 (Third column is A070735, fourth column is A070736)
%e A260355    k    1   2     3     4     5     6     7     8     9    10    11    12     13     14     15
%e A260355   --------------------------------------------------------------------------------------------
%e A260355 n  1|   1   1     1     1     1     1     1     1     1     1     1     1      1      1      1
%e A260355    2|   3   4     6     8    12    16    24    32    48    64    96   128    192    256    384
%e A260355    3|   6  10    18    33    60   108   198   360   648  1188  2145  3888   7083  12844  23328
%e A260355    4|  10  20    44    96   214   472  1043  2304  5136 11328 24993 55296 122624 271040 599832
%e A260355    5|  15  35    89   231   600  1564  4074 10618
%e A260355    6|  21  56   162   484  1443  4320
%e A260355    7|  28  84   271   915  3089
%e A260355    8|  36 120   428  1608
%e A260355    9|  45 165   642  2664
%e A260355   10|  55 220   930  4208
%e A260355   11|  66 286  1304
%e A260355   12|  78 364  1781
%e A260355   13|  91 455  2377
%e A260355   14| 105 560  3111
%e A260355   15| 120 680  4002
%e A260355 (Partially filled in) table of how many nonequivalent sets of permutations achieves the value of T(n,k)
%e A260355    k    1    2     3     4     5     6     7     8     9    10    11    12    13     14     15
%e A260355   --------------------------------------------------------------------------------------------
%e A260355 n  1|   1    1     1     1     1     1     1     1     1     1     1     1     1      1      1
%e A260355    2|   1    1     1     1     1     1     1     1     1     1     1     1     1      1      1
%e A260355    3|   1    1     1     1     1     2     1     2     2     2     1     3     1      1      3
%e A260355    4|   1    1     2     4    11    10    10    81   791   533    24  1461  3634    192   2404
%e A260355    5|   1    1     3    12    16   188   211  2685
%e A260355    6|   1    1    10   110    16
%e A260355    7|   1    1     6
%e A260355    8|   1    1    16
%e A260355    9|   1    1     4
%e A260355   10|   1    1    12
%e A260355   11|   1    1
%e A260355   12|   1    1
%e A260355   13|   1    1
%e A260355   14|   1    1
%e A260355   15|   1    1
%o A260355 (Python)
%o A260355 from itertools import permutations, combinations_with_replacement
%o A260355 def A260355(n,k): # compute T(n,k)
%o A260355     if k == 1:
%o A260355         return n*(n+1)//2
%o A260355     ntuple, count = tuple(range(1,n+1)), n**(k+1)
%o A260355     for s in combinations_with_replacement(permutations(ntuple,n),k-2):
%o A260355         t = list(ntuple)
%o A260355         for d in s:
%o A260355             for i in range(n):
%o A260355                 t[i] *= d[i]
%o A260355         t.sort()
%o A260355         v = 0
%o A260355         for i in range(n):
%o A260355             v += (n-i)*t[i]
%o A260355         if v < count:
%o A260355             count = v
%o A260355     return count
%Y A260355 Cf. A001563, A029744, A000217, A000292 (T(n,2)), A070735 (T(n,3)), A070736 (T(n,4)).
%K A260355 nonn,tabl,hard
%O A260355 1,3
%A A260355 _Chai Wah Wu_, Jul 29 2015