This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260360 #27 Aug 08 2021 13:55:38 %S A260360 0,1,2,2,1,1,8,4,2,2,2,2,16,10,16,24,6,4,4,10,28,30,8,2,12,36,50,4,0, %T A260360 6,4,6,14,32,8,10,80,40,46,84,14,16,4,4,4,30,76,94,10,12,12,0,3,129, %U A260360 64,62,18,16,40,26,56,14,18,66,68,4,166,144,18,168,118,30,24,184,94,86,6,12,2,12,36,40,70,56,10 %N A260360 The absolute difference between the largest prime factors of prime(n)-1 and prime(n+1)-1. %C A260360 a(n)=0 if and only if n is in A105403. %C A260360 It is an open question whether there are infinitely many zeros in this sequence. Are there infinitely many terms below some fixed upper bound? %H A260360 Robert Israel, <a href="/A260360/b260360.txt">Table of n, a(n) for n = 2..10000</a> %F A260360 a(n) = abs(A023503(n+1) - A023503(n)). - _Robert Israel_, Aug 06 2015 %e A260360 n=4: The prime factors of prime(4)-1 are 2,3 and the prime factors of prime(5)-1 are 2,5. The largest are 3 and 5, so a(4)=2. %p A260360 B:= [seq(max(numtheory:-factorset(ithprime(i)-1)),i=2..101)]: %p A260360 seq(abs(B[n+1]-B[n]),n=1..99); # _Robert Israel_, Aug 06 2015 %t A260360 Table[Abs[FactorInteger[Prime[n] - 1][[-1, 1]] - FactorInteger[Prime[n + 1] - 1][[-1, 1]]], {n, 2, 86}] (* _Michael De Vlieger_, Jul 24 2015 *) %t A260360 Rest[Abs[Differences[Table[FactorInteger[p-1][[-1,1]],{p,Prime[ Range[ 90]]}]]]] (* _Harvey P. Dale_, Aug 08 2021 *) %o A260360 (PARI) gpf(n) = if(n>1, vecmax(factor(n)[, 1]), 1); %o A260360 a(n) = gpf(prime(n)-1) - gpf(prime(n+1)-1); \\ _Michel Marcus_, Aug 05 2015 %Y A260360 Cf. A023503, A105403. %K A260360 nonn %O A260360 2,3 %A A260360 _Pratik Koirala_, _Otis Tweneboah_, _Nathan Fox_, _Eugene Fiorini_, Jul 23 2015