This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260428 #23 Feb 06 2023 05:02:20 %S A260428 69,77,81,121,169,205,209,261,265,275,289,295,305,321,323,327,329,339, %T A260428 377,405,407,437,453,473,475,481,493,517,533,551,553,559,565,575,581, %U A260428 583,595,625,649,667,671,689,703,707,737,747,749,755,763,767,779,781,785,805,815,833,835,851,855,861,869,893,905 %N A260428 Composite numbers whose binary representations encode a polynomial (with coefficients 0 or 1) which is irreducible over Q, but reducible over GF(2). %H A260428 Antti Karttunen, <a href="/A260428/b260428.txt">Table of n, a(n) for n = 1..11585</a> %p A260428 f:= proc(n) local L,p,x; %p A260428 if isprime(n) then return false fi; %p A260428 L:= convert(n,base,2); %p A260428 p:= add(L[i]*x^(i-1),i=1..nops(L)); %p A260428 irreduc(p) and not (Irreduc(p) mod 2); %p A260428 end proc: %p A260428 select(f, [$2..10000]); # _Robert Israel_, Jul 27 2015 %t A260428 okQ[n_] := CompositeQ[n] && Module[{id, pol, x}, id = IntegerDigits[n, 2] // Reverse; pol = id.x^Range[0, Length[id]-1]; IrreduciblePolynomialQ[pol] && !IrreduciblePolynomialQ[pol, Modulus -> 2]]; %t A260428 Select[Range[1000], okQ] (* _Jean-François Alcover_, Feb 06 2023 *) %o A260428 (PARI) %o A260428 isA260428(n) = (polisirreducible( Pol(binary(n)) ) && !polisirreducible(Pol(binary(n))*Mod(1, 2)) && !isprime(n)); %o A260428 n = 0; i = 0; while(n < 65537, n++; if(isA260428(n), i++; write("b260428.txt", i, " ", n))); %Y A260428 Intersection of A002808 and A260427. %Y A260428 Intersection of A091212 and A206074. %Y A260428 Intersection of A091242 and A206075. %Y A260428 Complement of A257688 in A206074. %K A260428 nonn %O A260428 1,1 %A A260428 _Antti Karttunen_, Jul 26 2015