cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260428 Composite numbers whose binary representations encode a polynomial (with coefficients 0 or 1) which is irreducible over Q, but reducible over GF(2).

This page as a plain text file.
%I A260428 #23 Feb 06 2023 05:02:20
%S A260428 69,77,81,121,169,205,209,261,265,275,289,295,305,321,323,327,329,339,
%T A260428 377,405,407,437,453,473,475,481,493,517,533,551,553,559,565,575,581,
%U A260428 583,595,625,649,667,671,689,703,707,737,747,749,755,763,767,779,781,785,805,815,833,835,851,855,861,869,893,905
%N A260428 Composite numbers whose binary representations encode a polynomial (with coefficients 0 or 1) which is irreducible over Q, but reducible over GF(2).
%H A260428 Antti Karttunen, <a href="/A260428/b260428.txt">Table of n, a(n) for n = 1..11585</a>
%p A260428 f:= proc(n) local L,p,x;
%p A260428   if isprime(n) then return false fi;
%p A260428   L:= convert(n,base,2);
%p A260428   p:= add(L[i]*x^(i-1),i=1..nops(L));
%p A260428   irreduc(p) and not (Irreduc(p) mod 2);
%p A260428 end proc:
%p A260428 select(f, [$2..10000]); # _Robert Israel_, Jul 27 2015
%t A260428 okQ[n_] := CompositeQ[n] && Module[{id, pol, x}, id = IntegerDigits[n, 2] // Reverse; pol = id.x^Range[0, Length[id]-1]; IrreduciblePolynomialQ[pol] && !IrreduciblePolynomialQ[pol, Modulus -> 2]];
%t A260428 Select[Range[1000], okQ] (* _Jean-François Alcover_, Feb 06 2023 *)
%o A260428 (PARI)
%o A260428 isA260428(n) = (polisirreducible( Pol(binary(n)) ) && !polisirreducible(Pol(binary(n))*Mod(1, 2)) && !isprime(n));
%o A260428 n = 0; i = 0; while(n < 65537, n++; if(isA260428(n), i++; write("b260428.txt", i, " ", n)));
%Y A260428 Intersection of A002808 and A260427.
%Y A260428 Intersection of A091212 and A206074.
%Y A260428 Intersection of A091242 and A206075.
%Y A260428 Complement of A257688 in A206074.
%K A260428 nonn
%O A260428 1,1
%A A260428 _Antti Karttunen_, Jul 26 2015