This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A260434 #14 Jul 28 2015 05:37:36 %S A260434 1,4,2,12,6,7,3,30,19,18,10,21,11,9,5,74,48,52,32,49,31,25,15,54,36, %T A260434 27,16,24,14,17,8,172,125,118,85,128,89,76,51,119,86,75,50,64,43,38, %U A260434 26,132,92,83,61,68,45,41,28,60,40,35,22,42,29,23,13,383,314,275,219,266,208,201,152,283,227,207,159,174,129,127,88 %N A260434 Permutation of natural numbers: a(1) = 1, a(2n) = A257803(1+a(n)), a(2n+1) = A257804(a(n)), where A257803 and A257804 give the positions of odd and even terms in A233271, the infinite trunk of inverted binary beanstalk. %C A260434 This sequence can be represented as a binary tree. Each left hand child is produced as A257803(1+n), and each right hand child as A257804(n), when the parent contains n: %C A260434 | %C A260434 ...................1................... %C A260434 4 2 %C A260434 12......../ \........6 7......../ \........3 %C A260434 / \ / \ / \ / \ %C A260434 / \ / \ / \ / \ %C A260434 / \ / \ / \ / \ %C A260434 30 19 18 10 21 11 9 5 %C A260434 74 48 52 32 49 31 25 15 54 36 27 16 24 14 17 8 %C A260434 etc. %C A260434 Note how this is a mirror image of the tree shown in A260432. %H A260434 Antti Karttunen, <a href="/A260434/b260434.txt">Table of n, a(n) for n = 1..16383</a> %H A260434 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A260434 a(1) = 1, a(2n) = A257803(1+a(n)), a(2n+1) = A257804(a(n)). %F A260434 As a composition of other permutations: %F A260434 a(n) = A260432(A054429(n)). %F A260434 a(n) = A260430(A260432(n)). %o A260434 (Scheme, with memoizing macro definec) %o A260434 (definec (A260434 n) (cond ((<= n 1) n) ((even? n) (A257803 (+ 1 (A260434 (/ n 2))))) (else (A257804 (A260434 (/ (- n 1) 2)))))) %Y A260434 Inverse: A260433. %Y A260434 Related permutations: A260432, A260430, A054429. %Y A260434 Cf. A257803, A257804, A257807, A257808. %Y A260434 Cf. also A233271, A257806. %K A260434 nonn,tabf,look %O A260434 1,2 %A A260434 _Antti Karttunen_, Jul 27 2015